久久久久久久av_日韩在线中文_看一级毛片视频_日本精品二区_成人深夜福利视频_武道仙尊动漫在线观看

為多個(gè)層次組優(yōu)化 SUM OVER PARTITION BY

Optimizing SUM OVER PARTITION BY for several hierarchical groups(為多個(gè)層次組優(yōu)化 SUM OVER PARTITION BY)
本文介紹了為多個(gè)層次組優(yōu)化 SUM OVER PARTITION BY的處理方法,對(duì)大家解決問(wèn)題具有一定的參考價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)吧!

問(wèn)題描述

限時(shí)送ChatGPT賬號(hào)..

我有一張如下表:

Region    Country    Manufacturer    Brand    Period    Spend
R1        C1         M1              B1       2016      5
R1        C1         M1              B1       2017      10
R1        C1         M1              B1       2017      20
R1        C1         M1              B2       2016      15
R1        C1         M1              B3       2017      20
R1        C2         M1              B1       2017      5
R1        C2         M2              B4       2017      25
R1        C2         M2              B5       2017      30
R2        C3         M1              B1       2017      35
R2        C3         M2              B4       2017      40
R2        C3         M2              B5       2017      45

我需要在不同的組中找到 SUM([Spend] 如下:

I need to find SUM([Spend] over different groups as follow:

  1. 整個(gè)表中所有行的總支出
  2. 每個(gè)區(qū)域
  3. 的總支出
  4. 每個(gè)地區(qū)和國(guó)家組的總支出
  5. 每個(gè)地區(qū)、國(guó)家/地區(qū)和廣告客戶組的總支出
  1. Total Spend over all the rows in the whole table
  2. Total Spend for each Region
  3. Total Spend for each Region and Country group
  4. Total Spend for each Region, Country and Advertiser group

所以我在下面寫(xiě)了這個(gè)查詢(xún):

So I wrote this query below:

SELECT 
    [Period]
    ,[Region]
    ,[Country]
    ,[Manufacturer]
    ,[Brand]
    ,SUM([Spend]) OVER (PARTITION BY [Period]) AS [SumOfSpendWorld]
    ,SUM([Spend]) OVER (PARTITION BY [Period], [Region]) AS [SumOfSpendRegion]
    ,SUM([Spend]) OVER (PARTITION BY [Period], [Region], [Country]) AS [SumOfSpendCountry]
    ,SUM([Spend]) OVER (PARTITION BY [Period], [Region], [Country], [Manufacturer]) AS [SumOfSpendManufacturer]
FROM myTable

但是對(duì)于只有 450K 行的表,該查詢(xún)需要 15 分鐘以上的時(shí)間.我想知道是否有任何方法可以?xún)?yōu)化此性能.預(yù)先感謝您的回答/建議!

But that query takes >15 minutes for a table of just 450K rows. I'd like to know if there is any way to optimize this performance. Thank you in advanced for your answers/suggestions!

推薦答案

你對(duì)問(wèn)題的描述向我暗示了分組集:

Your description of the problem suggests grouping sets to me:

SELECT YEAR([Period]) AS [Period], [Region], [Country], [Manufacturer], 
       SUM([Spend])
GROUP BY GROUPING SETS ( (YEAR([Period]),
                         (YEAR([Period]), [Region]),
                         (YEAR([Period]), [Region], [Country]), 
                         (YEAR([Period]), [Region], [Country], [Manufacturer])
                        );

我不知道這是否會(huì)更快,但它似乎更符合您的問(wèn)題.

I don't know if this will be faster, but it certainly seems more aligned with your question.

這篇關(guān)于為多個(gè)層次組優(yōu)化 SUM OVER PARTITION BY的文章就介紹到這了,希望我們推薦的答案對(duì)大家有所幫助,也希望大家多多支持html5模板網(wǎng)!

【網(wǎng)站聲明】本站部分內(nèi)容來(lái)源于互聯(lián)網(wǎng),旨在幫助大家更快的解決問(wèn)題,如果有圖片或者內(nèi)容侵犯了您的權(quán)益,請(qǐng)聯(lián)系我們刪除處理,感謝您的支持!

相關(guān)文檔推薦

What SQL Server Datatype Should I Use To Store A Byte[](我應(yīng)該使用什么 SQL Server 數(shù)據(jù)類(lèi)型來(lái)存儲(chǔ)字節(jié) [])
Interpreting type codes in sys.objects in SQL Server(解釋 SQL Server 中 sys.objects 中的類(lèi)型代碼)
Typeorm Does not return all data(Typeorm 不返回所有數(shù)據(jù))
Typeorm .loadRelationCountAndMap returns zeros(Typeorm .loadRelationCountAndMap 返回零)
How to convert #39;2016-07-01 01:12:22 PM#39; to #39;2016-07-01 13:12:22#39; hour format?(如何將“2016-07-01 01:12:22 PM轉(zhuǎn)換為“2016-07-01 13:12:22小時(shí)格式?)
MS SQL: Should ISDATE() Return quot;1quot; when Cannot Cast as Date?(MS SQL:ISDATE() 是否應(yīng)該返回“1?什么時(shí)候不能投射為日期?)
主站蜘蛛池模板: 亚洲欧美国产精品久久 | 91精品中文字幕一区二区三区 | 美女黄视频网站 | 91电影| 一级做a爰片性色毛片 | 一区二区三区免费观看 | 久久av网 | 男人天堂手机在线视频 | 视频第一区 | 日日天天 | 亚洲一区二区三区四区五区午夜 | 天堂av中文在线 | 一级全黄视频 | 久久久久久久久久久91 | 亚洲www.| 亚洲乱码一区二区 | 日韩视频区 | 日韩精品在线播放 | 欧美视频二区 | 午夜视频在线免费观看 | 亚洲视频免费观看 | 日本三级播放 | 成人网av| 久久av一区二区三区 | 成人精品视频99在线观看免费 | 午夜免费观看 | 久久国产精品一区二区三区 | 91在线视频播放 | 妞干网av | 国产国拍亚洲精品av | 久久最新| 国产免费一区二区三区 | 久久亚洲精品国产精品紫薇 | 日韩av一区二区在线观看 | 在线观看午夜视频 | 亚洲第1页 | 一区日韩 | 人人人干 | 免费一级做a爰片久久毛片潮喷 | 久久精品国产一区 | 国产精品久久久久久福利一牛影视 |