本文介紹了在 Python Pandas 中刪除多列中的所有重復行的處理方法,對大家解決問題具有一定的參考價值,需要的朋友們下面隨著小編來一起學習吧!
問題描述
pandas
drop_duplicates
函數非常適合唯一化"數據幀.但是,要傳遞的關鍵字參數之一是 take_last=True
或 take_last=False
,而我想刪除在列子集中重復的所有行.這可能嗎?
The pandas
drop_duplicates
function is great for "uniquifying" a dataframe. However, one of the keyword arguments to pass is take_last=True
or take_last=False
, while I would like to drop all rows which are duplicates across a subset of columns. Is this possible?
A B C
0 foo 0 A
1 foo 1 A
2 foo 1 B
3 bar 1 A
例如,我想刪除與列 A
和 C
匹配的行,所以這應該刪除第 0 行和第 1 行.
As an example, I would like to drop rows which match on columns A
and C
so this should drop rows 0 and 1.
推薦答案
現在有了 drop_duplicates 和 keep 參數.
This is much easier in pandas now with drop_duplicates and the keep parameter.
import pandas as pd
df = pd.DataFrame({"A":["foo", "foo", "foo", "bar"], "B":[0,1,1,1], "C":["A","A","B","A"]})
df.drop_duplicates(subset=['A', 'C'], keep=False)
這篇關于在 Python Pandas 中刪除多列中的所有重復行的文章就介紹到這了,希望我們推薦的答案對大家有所幫助,也希望大家多多支持html5模板網!
【網站聲明】本站部分內容來源于互聯網,旨在幫助大家更快的解決問題,如果有圖片或者內容侵犯了您的權益,請聯系我們刪除處理,感謝您的支持!