久久久久久久av_日韩在线中文_看一级毛片视频_日本精品二区_成人深夜福利视频_武道仙尊动漫在线观看

如何在 Python OpenCV 中檢測文本文檔圖像中的段落

How to detect paragraphs in a text document image for a non-consistent text structure in Python OpenCV(如何在 Python OpenCV 中檢測文本文檔圖像中的段落是否存在不一致的文本結構) - IT屋-程序員軟件開發技術分享
本文介紹了如何在 Python OpenCV 中檢測文本文檔圖像中的段落是否存在不一致的文本結構的處理方法,對大家解決問題具有一定的參考價值,需要的朋友們下面隨著小編來一起學習吧!

問題描述

我試圖通過首先將其轉換為圖像然后使用 OpenCV 來識別 .pdf 文檔中的文本段落.但是我在文本行而不是段落上得到邊界框.如何設置一些閾值或其他限制來獲取段落而不是行?

這是示例輸入圖像:

這是我為上述示例得到的輸出:

我試圖在中間的段落上設置一個邊界框.我正在使用

這就是魔法發生的地方.我們可以假設一個段落是一段緊密相連的單詞,為了實現這一點,我們將相鄰的單詞進行擴張

結果

導入 cv2將 numpy 導入為 np# 加載圖像,灰度,高斯模糊,Otsu的閾值圖像 = cv2.imread('1.png')灰色 = cv2.cvtColor(圖像,cv2.COLOR_BGR2GRAY)模糊 = cv2.GaussianBlur(灰色, (7,7), 0)thresh = cv2.threshold(模糊, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]# 創建矩形結構元素并擴張內核 = cv2.getStructuringElement(cv2.MORPH_RECT, (5,5))dilate = cv2.dilate(閾值,內核,迭代=4)# 查找輪廓并繪制矩形cnts = cv2.findContours(擴張,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)cnts = cnts[0] 如果 len(cnts) == 2 否則 cnts[1]對于 cnts 中的 c:x,y,w,h = cv2.boundingRect(c)cv2.rectangle(圖像, (x, y), (x + w, y + h), (36,255,12), 2)cv2.imshow('thresh', thresh)cv2.imshow('擴張',擴張)cv2.imshow('圖像', 圖像)cv2.waitKey()

I am trying to identify paragraphs of text in a .pdf document by first converting it into an image then using OpenCV. But I am getting bounding boxes on lines of text instead of paragraphs. How can I set some threshold or some other limit to get paragraphs instead of lines?

Here is the sample input image:

Here is the output I am getting for the above sample:

I am trying to get a single bounding box on the paragraph in the middle. I am using this code.

import cv2
import numpy as np

large = cv2.imread('sample image.png')
rgb = cv2.pyrDown(large)
small = cv2.cvtColor(rgb, cv2.COLOR_BGR2GRAY)

# kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
kernel = np.ones((5, 5), np.uint8)
grad = cv2.morphologyEx(small, cv2.MORPH_GRADIENT, kernel)

_, bw = cv2.threshold(grad, 0.0, 255.0, cv2.THRESH_BINARY | cv2.THRESH_OTSU)

kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 1))
connected = cv2.morphologyEx(bw, cv2.MORPH_CLOSE, kernel)

# using RETR_EXTERNAL instead of RETR_CCOMP
contours, hierarchy = cv2.findContours(connected.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
#For opencv 3+ comment the previous line and uncomment the following line
#_, contours, hierarchy = cv2.findContours(connected.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)

mask = np.zeros(bw.shape, dtype=np.uint8)

for idx in range(len(contours)):
    x, y, w, h = cv2.boundingRect(contours[idx])
    mask[y:y+h, x:x+w] = 0
    cv2.drawContours(mask, contours, idx, (255, 255, 255), -1)
    r = float(cv2.countNonZero(mask[y:y+h, x:x+w])) / (w * h)

    if r > 0.45 and w > 8 and h > 8:
        cv2.rectangle(rgb, (x, y), (x+w-1, y+h-1), (0, 255, 0), 2)


cv2.imshow('rects', rgb)
cv2.waitKey(0)

解決方案

This is a classic use for dilate. Whenever you want to connect multiple items together, you can dilate them to join adjacent contours into a single contour. Here's a simple approach:

  • Convert image to grayscale and Gaussian blur
  • Otsu's threshold
  • Dilate to connect adjacent words together
  • Find contours and draw contours

Otsu's threshold

Here's where the magic happens. We can assume that a paragraph is a section of words that are close together, to achieve this we dilate to connect adjacent words

Result

import cv2
import numpy as np

# Load image, grayscale, Gaussian blur, Otsu's threshold
image = cv2.imread('1.png')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (7,7), 0)
thresh = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]

# Create rectangular structuring element and dilate
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5,5))
dilate = cv2.dilate(thresh, kernel, iterations=4)

# Find contours and draw rectangle
cnts = cv2.findContours(dilate, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
    x,y,w,h = cv2.boundingRect(c)
    cv2.rectangle(image, (x, y), (x + w, y + h), (36,255,12), 2)

cv2.imshow('thresh', thresh)
cv2.imshow('dilate', dilate)
cv2.imshow('image', image)
cv2.waitKey()

這篇關于如何在 Python OpenCV 中檢測文本文檔圖像中的段落是否存在不一致的文本結構的文章就介紹到這了,希望我們推薦的答案對大家有所幫助,也希望大家多多支持html5模板網!

【網站聲明】本站部分內容來源于互聯網,旨在幫助大家更快的解決問題,如果有圖片或者內容侵犯了您的權益,請聯系我們刪除處理,感謝您的支持!

相關文檔推薦

How to draw a rectangle around a region of interest in python(如何在python中的感興趣區域周圍繪制一個矩形)
How can I detect and track people using OpenCV?(如何使用 OpenCV 檢測和跟蹤人員?)
How to apply threshold within multiple rectangular bounding boxes in an image?(如何在圖像的多個矩形邊界框中應用閾值?)
How can I download a specific part of Coco Dataset?(如何下載 Coco Dataset 的特定部分?)
Detect image orientation angle based on text direction(根據文本方向檢測圖像方向角度)
Detect centre and angle of rectangles in an image using Opencv(使用 Opencv 檢測圖像中矩形的中心和角度)
主站蜘蛛池模板: 6080亚洲精品一区二区 | 成年人在线视频 | 国产精品视频网 | 日韩欧美在线精品 | av在线一区二区三区 | 91精品国产综合久久精品 | 欧美最猛黑人xxxⅹ 粉嫩一区二区三区四区公司1 | 在线播放国产一区二区三区 | 欧美成年网站 | 中文字幕在线视频一区二区三区 | 亚洲国产视频一区 | 欧美激情一区二区三区 | 欧美在线一区视频 | 国内久久| 国产一区二区三区久久久久久久久 | 亚洲va欧美va天堂v国产综合 | 一区二区中文字幕 | 亚洲区中文字幕 | 国产精品久久久亚洲 | 久久久综合色 | 精品九九 | 亚洲高清在线观看 | 91观看| 九久久| 久久精品国产亚洲 | 国产黄色精品在线观看 | 国产一级精品毛片 | 亚洲欧美一区二区三区视频 | 在线视频国产一区 | 69av网| 日韩av三区| 国产免费一区二区三区免费视频 | 国产精品成人av | 自拍偷拍亚洲视频 | 91久久精品国产91久久性色tv | 美女黄色在线观看 | 无人区国产成人久久三区 | 天天操 夜夜操 | 精品一区二区三区在线观看 | 午夜视频在线观看一区二区 | 中文在线播放 |