久久久久久久av_日韩在线中文_看一级毛片视频_日本精品二区_成人深夜福利视频_武道仙尊动漫在线观看

立體校準 Opencv Python 和視差圖

Stereo Calibration Opencv Python and Disparity Map(立體校準 Opencv Python 和視差圖)
本文介紹了立體校準 Opencv Python 和視差圖的處理方法,對大家解決問題具有一定的參考價值,需要的朋友們下面隨著小編來一起學習吧!

問題描述

我有興趣找到一個場景的視差圖.首先,我使用以下代碼進行了立體校準(我在 Google 的幫助下自己編寫了它,在沒有找到任何用 Python 編寫的 OpenCV 2.4.10 相同的有用教程之后).

I am interested in finding the disparity map of a scene. To start with, I did stereo calibration using the following code (I wrote it myself with a little help from Google, after failing to find any helpful tutorials for the same written in python for OpenCV 2.4.10).

我在兩個相機上同時拍攝了棋盤的圖像,并將它們保存為 left*.jpg 和 right*.jpg.

I took images of a chessboard simultaneously on both cameras and saved them as left*.jpg and right*.jpg.

import numpy as np
import cv2
import glob

# termination criteria
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)

# prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
objp = np.zeros((6*9,3), np.float32)
objp[:,:2] = np.mgrid[0:9,0:6].T.reshape(-1,2)


# Arrays to store object points and image points from all the images.
objpointsL = [] # 3d point in real world space
imgpointsL = [] # 2d points in image plane.
objpointsR = []
imgpointsR = []

images = glob.glob('left*.jpg')

for fname in images:
    img = cv2.imread(fname)
    grayL = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

    # Find the chess board corners
    ret, cornersL = cv2.findChessboardCorners(grayL, (9,6),None)
    # If found, add object points, image points (after refining them)
    if ret == True:
        objpointsL.append(objp)

        cv2.cornerSubPix(grayL,cornersL,(11,11),(-1,-1),criteria)
        imgpointsL.append(cornersL)


images = glob.glob('right*.jpg')

for fname in images:
    img = cv2.imread(fname)
    grayR = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

    # Find the chess board corners
    ret, cornersR = cv2.findChessboardCorners(grayR, (9,6),None)

    # If found, add object points, image points (after refining them)
    if ret == True:
        objpointsR.append(objp)

        cv2.cornerSubPix(grayR,cornersR,(11,11),(-1,-1),criteria)
        imgpointsR.append(cornersR)



retval,cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, R, T, E, F = cv2.stereoCalibrate(objpointsL, imgpointsL, imgpointsR, (320,240))

如何糾正圖像?在繼續查找視差圖之前,我還應該執行哪些其他步驟?我在某處讀到,在計算視差圖時,在兩幀上檢測到的特征應該位于同一水平線上.請幫幫我.任何幫助將非常感激.

How do I rectify the images? What other steps should I do before going on to find the disparity map? I read somewhere that while calculating the disparity map, the features detected on both frames should lie on the same horizontal line. Please help me out here. Any help would be much appreciated.

推薦答案

你需要cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2 和 cv2.undistort() 的newCameraMatrix"

you need cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2 and "newCameraMatrix" for cv2.undistort()

您可以使用 cv2.getOptimalNewCameraMatrix()

所以在腳本的其余部分粘貼:

so in the remainder of your script paste this:

# Assuming you have left01.jpg and right01.jpg that you want to rectify
lFrame = cv2.imread('left01.jpg')
rFrame = cv2.imread('right01.jpg')
w, h = lFrame.shape[:2] # both frames should be of same shape
frames = [lFrame, rFrame]

# Params from camera calibration
camMats = [cameraMatrix1, cameraMatrix2]
distCoeffs = [distCoeffs1, distCoeffs2]

camSources = [0,1]
for src in camSources:
    distCoeffs[src][0][4] = 0.0 # use only the first 2 values in distCoeffs

# The rectification process
newCams = [0,0]
roi = [0,0]
for src in camSources:
    newCams[src], roi[src] = cv2.getOptimalNewCameraMatrix(cameraMatrix = camMats[src], 
                                                           distCoeffs = distCoeffs[src], 
                                                           imageSize = (w,h), 
                                                           alpha = 0)



rectFrames = [0,0]
for src in camSources:
        rectFrames[src] = cv2.undistort(frames[src], 
                                        camMats[src], 
                                        distCoeffs[src])

# See the results
view = np.hstack([frames[0], frames[1]])    
rectView = np.hstack([rectFrames[0], rectFrames[1]])

cv2.imshow('view', view)
cv2.imshow('rectView', rectView)

# Wait indefinitely for any keypress
cv2.waitKey(0)

希望這能讓你開始下一件事,可能是計算視差圖";)

hope that gets you on your way to the next thing which might be calculating "disparity maps" ;)

參考:

http://www.janeriksolem.net/2014/05/how-to-calibrate-camera-with-opencv-and.html

這篇關于立體校準 Opencv Python 和視差圖的文章就介紹到這了,希望我們推薦的答案對大家有所幫助,也希望大家多多支持html5模板網!

【網站聲明】本站部分內容來源于互聯網,旨在幫助大家更快的解決問題,如果有圖片或者內容侵犯了您的權益,請聯系我們刪除處理,感謝您的支持!

相關文檔推薦

How to draw a rectangle around a region of interest in python(如何在python中的感興趣區域周圍繪制一個矩形)
How can I detect and track people using OpenCV?(如何使用 OpenCV 檢測和跟蹤人員?)
How to apply threshold within multiple rectangular bounding boxes in an image?(如何在圖像的多個矩形邊界框中應用閾值?)
How can I download a specific part of Coco Dataset?(如何下載 Coco Dataset 的特定部分?)
Detect image orientation angle based on text direction(根據文本方向檢測圖像方向角度)
Detect centre and angle of rectangles in an image using Opencv(使用 Opencv 檢測圖像中矩形的中心和角度)
主站蜘蛛池模板: 亚洲成人999 | 久久久久国产一区二区三区 | 爱草在线 | 国产精品欧美日韩 | 精品日韩 | 中文在线a在线 | 久久99久久99久久 | 看亚洲a级一级毛片 | 日韩av成人 | 国产视频一区二区 | 观看av| av国产精品| 国产精品久久久久久久久久久久 | 亚洲一区国产精品 | 成人午夜影院 | 久久视频免费看 | 免费看一区二区三区 | 国产高清久久久 | 91精品国产自产精品男人的天堂 | 国产精品久久久久久久久久久久午夜片 | 欧美天堂在线观看 | 国产高清区 | 美女视频h| 国产精品免费一区二区三区四区 | 国产美女网站 | 欧美福利 | 天天操天天玩 | caoporn免费在线视频 | 亚洲最大成人综合 | 国产精品久久久久久久免费观看 | 亚洲狠狠 | 国产精品免费观看 | 精品一区国产 | 中文字幕av亚洲精品一部二部 | 91九色婷婷 | 一级毛片视频在线 | 91大神在线资源观看无广告 | 一区二区三区回区在观看免费视频 | 三级特黄特色视频 | av毛片 | 欧美精品福利视频 |