久久久久久久av_日韩在线中文_看一级毛片视频_日本精品二区_成人深夜福利视频_武道仙尊动漫在线观看

立體校準(zhǔn) Opencv Python 和視差圖

Stereo Calibration Opencv Python and Disparity Map(立體校準(zhǔn) Opencv Python 和視差圖)
本文介紹了立體校準(zhǔn) Opencv Python 和視差圖的處理方法,對大家解決問題具有一定的參考價值,需要的朋友們下面隨著小編來一起學(xué)習(xí)吧!

問題描述

我有興趣找到一個場景的視差圖.首先,我使用以下代碼進(jìn)行了立體校準(zhǔn)(我在 Google 的幫助下自己編寫了它,在沒有找到任何用 Python 編寫的 OpenCV 2.4.10 相同的有用教程之后).

I am interested in finding the disparity map of a scene. To start with, I did stereo calibration using the following code (I wrote it myself with a little help from Google, after failing to find any helpful tutorials for the same written in python for OpenCV 2.4.10).

我在兩個相機(jī)上同時拍攝了棋盤的圖像,并將它們保存為 left*.jpg 和 right*.jpg.

I took images of a chessboard simultaneously on both cameras and saved them as left*.jpg and right*.jpg.

import numpy as np
import cv2
import glob

# termination criteria
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)

# prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
objp = np.zeros((6*9,3), np.float32)
objp[:,:2] = np.mgrid[0:9,0:6].T.reshape(-1,2)


# Arrays to store object points and image points from all the images.
objpointsL = [] # 3d point in real world space
imgpointsL = [] # 2d points in image plane.
objpointsR = []
imgpointsR = []

images = glob.glob('left*.jpg')

for fname in images:
    img = cv2.imread(fname)
    grayL = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

    # Find the chess board corners
    ret, cornersL = cv2.findChessboardCorners(grayL, (9,6),None)
    # If found, add object points, image points (after refining them)
    if ret == True:
        objpointsL.append(objp)

        cv2.cornerSubPix(grayL,cornersL,(11,11),(-1,-1),criteria)
        imgpointsL.append(cornersL)


images = glob.glob('right*.jpg')

for fname in images:
    img = cv2.imread(fname)
    grayR = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

    # Find the chess board corners
    ret, cornersR = cv2.findChessboardCorners(grayR, (9,6),None)

    # If found, add object points, image points (after refining them)
    if ret == True:
        objpointsR.append(objp)

        cv2.cornerSubPix(grayR,cornersR,(11,11),(-1,-1),criteria)
        imgpointsR.append(cornersR)



retval,cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, R, T, E, F = cv2.stereoCalibrate(objpointsL, imgpointsL, imgpointsR, (320,240))

如何糾正圖像?在繼續(xù)查找視差圖之前,我還應(yīng)該執(zhí)行哪些其他步驟?我在某處讀到,在計算視差圖時,在兩幀上檢測到的特征應(yīng)該位于同一水平線上.請幫幫我.任何幫助將非常感激.

How do I rectify the images? What other steps should I do before going on to find the disparity map? I read somewhere that while calculating the disparity map, the features detected on both frames should lie on the same horizontal line. Please help me out here. Any help would be much appreciated.

推薦答案

你需要cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2 和 cv2.undistort() 的newCameraMatrix"

you need cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2 and "newCameraMatrix" for cv2.undistort()

您可以使用 cv2.getOptimalNewCameraMatrix()

所以在腳本的其余部分粘貼:

so in the remainder of your script paste this:

# Assuming you have left01.jpg and right01.jpg that you want to rectify
lFrame = cv2.imread('left01.jpg')
rFrame = cv2.imread('right01.jpg')
w, h = lFrame.shape[:2] # both frames should be of same shape
frames = [lFrame, rFrame]

# Params from camera calibration
camMats = [cameraMatrix1, cameraMatrix2]
distCoeffs = [distCoeffs1, distCoeffs2]

camSources = [0,1]
for src in camSources:
    distCoeffs[src][0][4] = 0.0 # use only the first 2 values in distCoeffs

# The rectification process
newCams = [0,0]
roi = [0,0]
for src in camSources:
    newCams[src], roi[src] = cv2.getOptimalNewCameraMatrix(cameraMatrix = camMats[src], 
                                                           distCoeffs = distCoeffs[src], 
                                                           imageSize = (w,h), 
                                                           alpha = 0)



rectFrames = [0,0]
for src in camSources:
        rectFrames[src] = cv2.undistort(frames[src], 
                                        camMats[src], 
                                        distCoeffs[src])

# See the results
view = np.hstack([frames[0], frames[1]])    
rectView = np.hstack([rectFrames[0], rectFrames[1]])

cv2.imshow('view', view)
cv2.imshow('rectView', rectView)

# Wait indefinitely for any keypress
cv2.waitKey(0)

希望這能讓你開始下一件事,可能是計算視差圖";)

hope that gets you on your way to the next thing which might be calculating "disparity maps" ;)

參考:

http://www.janeriksolem.net/2014/05/how-to-calibrate-camera-with-opencv-and.html

這篇關(guān)于立體校準(zhǔn) Opencv Python 和視差圖的文章就介紹到這了,希望我們推薦的答案對大家有所幫助,也希望大家多多支持html5模板網(wǎng)!

【網(wǎng)站聲明】本站部分內(nèi)容來源于互聯(lián)網(wǎng),旨在幫助大家更快的解決問題,如果有圖片或者內(nèi)容侵犯了您的權(quán)益,請聯(lián)系我們刪除處理,感謝您的支持!

相關(guān)文檔推薦

How to draw a rectangle around a region of interest in python(如何在python中的感興趣區(qū)域周圍繪制一個矩形)
How can I detect and track people using OpenCV?(如何使用 OpenCV 檢測和跟蹤人員?)
How to apply threshold within multiple rectangular bounding boxes in an image?(如何在圖像的多個矩形邊界框中應(yīng)用閾值?)
How can I download a specific part of Coco Dataset?(如何下載 Coco Dataset 的特定部分?)
Detect image orientation angle based on text direction(根據(jù)文本方向檢測圖像方向角度)
Detect centre and angle of rectangles in an image using Opencv(使用 Opencv 檢測圖像中矩形的中心和角度)
主站蜘蛛池模板: 国产精品久久久亚洲 | 黄色一级视频免费 | 久久精品小视频 | 一区二区三区国产 | 日韩欧美在线播放 | 国产激情91久久精品导航 | 亚洲91| 日本久久一区 | 一级欧美| 中文字幕成人av | 欧美成人影院 | 午夜av成人| 精品亚洲一区二区三区 | 成人国产精品色哟哟 | 91中文字幕在线 | 黄色网一级片 | 国产伦精品一区二区三区照片91 | 国产黄色在线观看 | 中文字幕在线免费视频 | 久久99精品久久久水蜜桃 | 91在线电影| 免费视频一区 | 国产精品久久久乱弄 | 日日操网站 | 午夜在线视频 | 国产一区二区三区免费观看视频 | 超碰97人人人人人蜜桃 | 伊人网综合在线观看 | 免费看国产精品视频 | 国产高清精品在线 | 手机av网| 免费精品 | 国产成人精品午夜 | 亚洲一区中文字幕在线观看 | 欧美中文字幕一区二区三区亚洲 | 日韩欧美一区二区三区在线播放 | 在线观看亚洲专区 | 日韩精品区 | 成人午夜高清 | 999www视频免费观看 | 精品一区二区三区91 |