久久久久久久av_日韩在线中文_看一级毛片视频_日本精品二区_成人深夜福利视频_武道仙尊动漫在线观看

OpenCV 圖像匹配 - 表單照片與表單模板

OpenCV image matching - form photo vs form template(OpenCV 圖像匹配 - 表單照片與表單模板)
本文介紹了OpenCV 圖像匹配 - 表單照片與表單模板的處理方法,對大家解決問題具有一定的參考價值,需要的朋友們下面隨著小編來一起學習吧!

問題描述

I'm trying to detect wether a photo represents a predefined formular template filled with data.

I'm new to image processing and OpenCV but my first attempt is to use FlannBasedMatcher and compare the count of keypoints detected.

Is there a better way to do this?

filled-form.jpg

form-template.jpg

import numpy as np
import cv2
from matplotlib import pyplot as plt
MIN_MATCH_COUNT = 10
img1 = cv2.imread('filled-form.jpg',0)          # queryImage
img2 = cv2.imread('template-form.jpg',0) # trainImage
# Initiate SIFT detector
sift = cv2.xfeatures2d.SIFT_create()
# find the keypoints and descriptors with SIFT
kp1, des1 = sift.detectAndCompute(img1,None)
kp2, des2 = sift.detectAndCompute(img2,None)
FLANN_INDEX_KDTREE = 1
index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
search_params = dict(checks = 50)
flann = cv2.FlannBasedMatcher(index_params, search_params)
matches = flann.knnMatch(des1,des2,k=2)
# store all the good matches as per Lowe's ratio test.
good = []
for m,n in matches:
  if m.distance < 0.7*n.distance:
    good.append(m)
if len(good)>MIN_MATCH_COUNT:
  print "ALL GOOD!" 
else:
  print "Not enough matches are found - %d/%d" % (len(good),MIN_MATCH_COUNT)
  matchesMask = None

解決方案

I think that using SIFT and a keypoints matcher is the most robust approach to this problem. It should work fine with many different form templates. However, SIFT algorithm being patented, here is another approach that should work well too:

Step 1: Binarize

  • Threshold your photo and the template form using THRESH_OTSU tag.
  • Invert the two binary result Mats with the bitwise_notfunction.

Step 2: Find the forms' bounding rect

For the two binary Mats from Step 1:

  • Find the largest contour.
  • Use approxPolyDPto approximate the found contour to a quadrilateral (see picture above).

In my code, this is done inside getQuadrilateral().

Step 3: Homography and Warping

  • Find the transformation between the two forms' bounding rect with findHomography
  • Warp the photo's binary Mat using warpPerspective (and the homography Mat computed previously).

Step 4: Comparison between template and photo

  • Dilate the template form's binary Mat.
  • Subtract the warped binary Mat and the dilated template form's binary Mat.

This allows to extract the filled informations. But you can also do it the other way around:

Template form - Dilated Warped Mat

In this case, the result of the subtraction should be totally black. I would then use mean to get the average pixel's value. Finally, if that value is smaller than (let's say) 2, I would assume the form on the photo is matching the template form.


Here is the C++ code, it shouldn't be too hard to translate to Python :)

vector<Point> getQuadrilateral(Mat & grayscale)
{
    vector<vector<Point>> contours;
    findContours(grayscale, contours, RETR_EXTERNAL, CHAIN_APPROX_NONE);

    vector<int> indices(contours.size());
    iota(indices.begin(), indices.end(), 0);

    sort(indices.begin(), indices.end(), [&contours](int lhs, int rhs) {
        return contours[lhs].size() > contours[rhs].size();
    });

    vector<vector<Point>> polygon(1);
    approxPolyDP(contours[indices[0]], polygon[0], 5, true);
    if (polygon[0].size() == 4) // we have found a quadrilateral
    {
        return(polygon[0]);
    }
    return(vector<Point>());
}

int main(int argc, char** argv)
{
    Mat templateImg, sampleImg;
    templateImg = imread("template-form.jpg", 0);
    sampleImg = imread("sample-form.jpg", 0);
    Mat templateThresh, sampleTresh;
    threshold(templateImg, templateThresh, 0, 255, THRESH_OTSU);
    threshold(sampleImg, sampleTresh, 0, 255, THRESH_OTSU);

    bitwise_not(templateThresh, templateThresh);
    bitwise_not(sampleTresh, sampleTresh);

    vector<Point> corners_template = getQuadrilateral(templateThresh);
    vector<Point> corners_sample = getQuadrilateral(sampleTresh);

    Mat homography = findHomography(corners_sample, corners_template);

    Mat warpSample;
    warpPerspective(sampleTresh, warpSample, homography, Size(templateThresh.cols, templateThresh.rows));

    Mat element_dilate = getStructuringElement(MORPH_ELLIPSE, Size(8, 8));
    dilate(templateThresh, templateThresh, element_dilate);

    Mat diff = warpSample - templateThresh;

    imshow("diff", diff);

    waitKey(0);

    return 0;
}

I Hope it is clear enough! ;)

P.S. This great answer helped me to retrieve the largest contour.

這篇關于OpenCV 圖像匹配 - 表單照片與表單模板的文章就介紹到這了,希望我們推薦的答案對大家有所幫助,也希望大家多多支持html5模板網!

【網站聲明】本站部分內容來源于互聯網,旨在幫助大家更快的解決問題,如果有圖片或者內容侵犯了您的權益,請聯系我們刪除處理,感謝您的支持!

相關文檔推薦

How to draw a rectangle around a region of interest in python(如何在python中的感興趣區域周圍繪制一個矩形)
How can I detect and track people using OpenCV?(如何使用 OpenCV 檢測和跟蹤人員?)
How to apply threshold within multiple rectangular bounding boxes in an image?(如何在圖像的多個矩形邊界框中應用閾值?)
How can I download a specific part of Coco Dataset?(如何下載 Coco Dataset 的特定部分?)
Detect image orientation angle based on text direction(根據文本方向檢測圖像方向角度)
Detect centre and angle of rectangles in an image using Opencv(使用 Opencv 檢測圖像中矩形的中心和角度)
主站蜘蛛池模板: 国产精品一区二区三区四区五区 | www操操| 国产a爽一区二区久久久 | 国产伦精品一区二区 | 欧美精品一区二区在线观看 | 日本久久精品视频 | 中文字幕免费中文 | 伊人网站在线观看 | 精品一区二区三区在线观看国产 | 人人精品 | 韩日免费视频 | 日韩黄色小视频 | 奇米影视77 | 在线免费观看a级片 | 午夜精品| 成人精品久久 | 久久夜色精品国产 | 亚洲一区在线日韩在线深爱 | 国产精品视频在线观看 | 在线观看黄色大片 | 蜜桃综合在线 | av性色| 欧美日韩午夜精品 | 国产成人99久久亚洲综合精品 | 成人高清在线视频 | 精品一区二区不卡 | 午夜电影网 | 在线色网| 精品一区二区观看 | 国产高清视频一区二区 | 涩涩视频在线看 | 99精品免费 | 久久久久亚洲精品 | 欧美一a一片一级一片 | 中文字幕av中文字幕 | 久久国内 | 欧美精三区欧美精三区 | 视频一区二区在线观看 | 国产一区二区三区免费 | 国产一区二区三区精品久久久 | 亚洲毛片在线观看 |