久久久久久久av_日韩在线中文_看一级毛片视频_日本精品二区_成人深夜福利视频_武道仙尊动漫在线观看

如何使用 Python OpenCV 將灰度圖像轉換為熱圖圖像

How to convert a grayscale image to heatmap image with Python OpenCV(如何使用 Python OpenCV 將灰度圖像轉換為熱圖圖像)
本文介紹了如何使用 Python OpenCV 將灰度圖像轉換為熱圖圖像的處理方法,對大家解決問題具有一定的參考價值,需要的朋友們下面隨著小編來一起學習吧!

問題描述

我有一個 (540, 960, 1) 形狀的圖像,其值范圍為黑白的 [0..255].我需要將其轉換為熱圖"表示.例如,具有 255 的像素應該是最熱的,而具有 0 的像素應該是最不熱的.其他介于兩者之間.我還需要將熱圖作為 Numpy 數組返回,以便稍后將它們合并到視頻中.有沒有辦法做到這一點?

解決方案

這里有兩種方法,一種使用Matplotlib,一種只使用OpenCV

方法#1: OpenCV +

我們可以使用 OpenCV 內置的熱圖功能.這是使用 cv2.COLORMAP_HOT 熱圖

的結果

代碼

導入 cv2圖像 = cv2.imread('frame.png', 0)熱圖 = cv2.applyColorMap(圖像,cv2.COLORMAP_HOT)cv2.imshow('熱圖', 熱圖)cv2.waitKey()


注意:雖然 OpenCV 的內置實現簡短快捷,但我建議使用方法 #1,因為有更大的顏色圖選擇.Matplotlib 有 數百種不同的顏色圖并允許您在 OpenCV 時創建自己的自定義顏色圖只有12個可供選擇.這是內置的 OpenCV 顏色圖選擇:

I have a (540, 960, 1) shaped image with values ranging from [0..255] which is black and white. I need to convert it to a "heatmap" representation. As an example, pixels with 255 should be of most heat and pixels with 0 should be with least heat. Others in-between. I also need to return the heat maps as Numpy arrays so I can later merge them to a video. Is there a way to achieve this?

解決方案

Here are two methods, one using Matplotlib and one using only OpenCV

Method #1: OpenCV + matplotlib.pyplot.get_cmap

To implement a grayscale (1-channel) -> heatmap (3-channel) conversion, we first load in the image as grayscale. By default, OpenCV reads in an image as 3-channel, 8-bit BGR. We can directly load in an image as grayscale using cv2.imread() with the cv2.IMREAD_GRAYSCALE parameter or use cv2.cvtColor() to convert a BGR image to grayscale with the cv2.COLOR_BGR2GRAY parameter. Once we load in the image, we throw this grayscale image into Matplotlib to obtain our heatmap image. Matplotlib returns a RGB format so we must convert back to Numpy format and switch to BGR colorspace for use with OpenCV. Here's a example using a scientific infrared camera image as input with the inferno colormap. See choosing color maps in Matplotlib for available built-in colormaps depending on your desired use case.

Input image:

Output heatmap image:

Code

import matplotlib.pyplot as plt
import numpy as np
import cv2

image = cv2.imread('frame.png', 0)
colormap = plt.get_cmap('inferno')
heatmap = (colormap(image) * 2**16).astype(np.uint16)[:,:,:3]
heatmap = cv2.cvtColor(heatmap, cv2.COLOR_RGB2BGR)

cv2.imshow('image', image)
cv2.imshow('heatmap', heatmap)
cv2.waitKey()

Method #2: cv2.applyColorMap()

We can use OpenCV's built in heatmap function. Here's the result using the cv2.COLORMAP_HOT heatmap

Code

import cv2

image = cv2.imread('frame.png', 0)
heatmap = cv2.applyColorMap(image, cv2.COLORMAP_HOT)

cv2.imshow('heatmap', heatmap)
cv2.waitKey()


Note: Although OpenCV's built-in implementation is short and quick, I recommend using Method #1 since there is a larger colormap selection. Matplotlib has hundreds of various colormaps and allows you to create your own custom color maps while OpenCV only has 12 to choose from. Here's the built in OpenCV colormap selection:

這篇關于如何使用 Python OpenCV 將灰度圖像轉換為熱圖圖像的文章就介紹到這了,希望我們推薦的答案對大家有所幫助,也希望大家多多支持html5模板網!

【網站聲明】本站部分內容來源于互聯網,旨在幫助大家更快的解決問題,如果有圖片或者內容侵犯了您的權益,請聯系我們刪除處理,感謝您的支持!

相關文檔推薦

How to draw a rectangle around a region of interest in python(如何在python中的感興趣區域周圍繪制一個矩形)
How can I detect and track people using OpenCV?(如何使用 OpenCV 檢測和跟蹤人員?)
How to apply threshold within multiple rectangular bounding boxes in an image?(如何在圖像的多個矩形邊界框中應用閾值?)
How can I download a specific part of Coco Dataset?(如何下載 Coco Dataset 的特定部分?)
Detect image orientation angle based on text direction(根據文本方向檢測圖像方向角度)
Detect centre and angle of rectangles in an image using Opencv(使用 Opencv 檢測圖像中矩形的中心和角度)
主站蜘蛛池模板: 亚洲成人免费视频 | 亚洲欧美激情国产综合久久久 | www.蜜桃av | 久久成人一区二区三区 | 黄色片网站国产 | 最新中文字幕在线 | 中文字幕99| 91传媒在线观看 | 欧美在线观看一区 | 久久伦理中文字幕 | 欧美一级淫片007 | 午夜爽爽爽男女免费观看 | 国产视频精品区 | 国产视频一二三区 | 精品久久久久久久人人人人传媒 | 黄免费观看视频 | 亚洲一区久久久 | 国产精品无码专区在线观看 | 日本a视频| 亚洲精品视频在线观看免费 | 2021狠狠干 | 日韩资源 | 日韩精品一区二区三区高清免费 | 日本人做爰大片免费观看一老师 | 国产香蕉视频在线播放 | 久久久久久国产精品 | 亚洲在线免费观看 | 欧美一级做性受免费大片免费 | 国产精品高清在线 | 亚洲欧美国产视频 | 亚洲成人蜜桃 | 国产成人免费视频网站高清观看视频 | 亚洲精品18| 久久国产精品亚洲 | 国产电影精品久久 | 亚洲福利一区 | 精品欧美一区二区三区久久久 | 日韩波多野结衣 | 亚洲欧美一区二区在线观看 | 欧美日韩精品久久久免费观看 | 天堂一区|