久久久久久久av_日韩在线中文_看一级毛片视频_日本精品二区_成人深夜福利视频_武道仙尊动漫在线观看

OpenCV ORB 檢測(cè)器發(fā)現(xiàn)的關(guān)鍵點(diǎn)很少

OpenCV ORB detector finds very few keypoints(OpenCV ORB 檢測(cè)器發(fā)現(xiàn)的關(guān)鍵點(diǎn)很少)
本文介紹了OpenCV ORB 檢測(cè)器發(fā)現(xiàn)的關(guān)鍵點(diǎn)很少的處理方法,對(duì)大家解決問(wèn)題具有一定的參考價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)吧!

問(wèn)題描述

我正在嘗試使用 ORB 關(guān)鍵點(diǎn)檢測(cè)器,它返回的點(diǎn)似乎比 SIFT 檢測(cè)器和 FAST 檢測(cè)器少得多.

I'm trying to use the ORB keypoint detector and it seems to be returning much fewer points than the SIFT detector and the FAST detector.

此圖顯示了 ORB 檢測(cè)器發(fā)現(xiàn)的關(guān)鍵點(diǎn):

This image shows the keypoints found by the ORB detector:

這張圖顯示了 SIFT 檢測(cè)階段發(fā)現(xiàn)的關(guān)鍵點(diǎn)(FAST 返回的點(diǎn)數(shù)相似).

and this image shows the keypoints found by the SIFT detection stage (FAST returns a similar number of points).

只有這么少的點(diǎn)會(huì)導(dǎo)致跨圖像的特征匹配結(jié)果非常差.我現(xiàn)在只是對(duì) ORB 的檢測(cè)階段感到好奇,因?yàn)檫@似乎我得到了不正確的結(jié)果.我已經(jīng)嘗試使用 ORB 檢測(cè)器和默認(rèn)參數(shù)以及下面詳述的自定義參數(shù).

Having such few points is resulting in very poor feature matching results across images. I'm just curious about the detection stage of ORB right now though because this seems like I'm getting incorrect results. I've tried using the ORB detector with default parameters and also custom parameters detailed below as well.

為什么會(huì)有這么大的差異?

Why such a big difference?

代碼:

orb = cv2.ORB_create(edgeThreshold=15, patchSize=31, nlevels=8, fastThreshold=20, scaleFactor=1.2, WTA_K=2,scoreType=cv2.ORB_HARRIS_SCORE, firstLevel=0, nfeatures=500)
#orb = cv2.ORB_create()
kp2 = orb.detect(img2)
img2_kp = cv2.drawKeypoints(img2, kp2, None, color=(0,255,0), 
        flags=cv2.DrawMatchesFlags_DEFAULT)

plt.figure()
plt.imshow(img2_kp)
plt.show()

推薦答案

增加 nfeatures 會(huì)增加檢測(cè)到的角點(diǎn)的數(shù)量.關(guān)鍵點(diǎn)提取器的類(lèi)型似乎無(wú)關(guān)緊要.我不確定如何將此參數(shù)傳遞給 FAST 或 Harris,但它似乎可以工作.

Increasing nfeatures increases the number of detected corners. The type of keypoint extractor seems irrelevant. I'm not sure how this parameter is passed to FAST or Harris but it seems to work.

orb = cv2.ORB_create(scoreType=cv2.ORB_FAST_SCORE)

orb = cv2.ORB_create(nfeatures=100000, scoreType=cv2.ORB_FAST_SCORE)

這篇關(guān)于OpenCV ORB 檢測(cè)器發(fā)現(xiàn)的關(guān)鍵點(diǎn)很少的文章就介紹到這了,希望我們推薦的答案對(duì)大家有所幫助,也希望大家多多支持html5模板網(wǎng)!

【網(wǎng)站聲明】本站部分內(nèi)容來(lái)源于互聯(lián)網(wǎng),旨在幫助大家更快的解決問(wèn)題,如果有圖片或者內(nèi)容侵犯了您的權(quán)益,請(qǐng)聯(lián)系我們刪除處理,感謝您的支持!

相關(guān)文檔推薦

How to draw a rectangle around a region of interest in python(如何在python中的感興趣區(qū)域周?chē)L制一個(gè)矩形)
How can I detect and track people using OpenCV?(如何使用 OpenCV 檢測(cè)和跟蹤人員?)
How to apply threshold within multiple rectangular bounding boxes in an image?(如何在圖像的多個(gè)矩形邊界框中應(yīng)用閾值?)
How can I download a specific part of Coco Dataset?(如何下載 Coco Dataset 的特定部分?)
Detect image orientation angle based on text direction(根據(jù)文本方向檢測(cè)圖像方向角度)
Detect centre and angle of rectangles in an image using Opencv(使用 Opencv 檢測(cè)圖像中矩形的中心和角度)
主站蜘蛛池模板: 午夜精品久久久久久 | 国产一级在线观看 | 亚洲国产精品激情在线观看 | 欧美午夜一区二区三区免费大片 | 黄片毛片在线观看 | 老司机久久 | 欧美精品一区二区三区在线 | 亚洲精品在线观 | 亚洲精品久 | 黑人精品欧美一区二区蜜桃 | 午夜私人影院 | av网站在线播放 | 国产成人精品久久二区二区91 | 精品国产一区二区国模嫣然 | 成人国产综合 | 久久精品小视频 | 日韩欧美一区二区三区免费看 | www.99re5.com | 欧美色视频免费 | 怡红院怡春院一级毛片 | 男女视频在线免费观看 | 日韩www| h肉视频| 亚洲精品久久久久久久不卡四虎 | 亚洲性视频 | 成人免费视频网址 | 国产视频1 | 美女黄18岁以下禁止观看 | 欧美一级久久 | av黄色网| 亚洲精品乱码久久久久久蜜桃 | 99精品视频在线 | 一区二区三区免费 | 亚洲看片网站 | 欧产日产国产精品国产 | 国产成人免费在线观看 | 毛片视频免费观看 | 欧美一区二区三区精品免费 | 国产精品久久久久久久久免费软件 | 国产精品99久久久久久大便 | 精品日韩一区 |