本文介紹了如何使用 opencv copyTo() 函數?的處理方法,對大家解決問題具有一定的參考價值,需要的朋友們下面隨著小編來一起學習吧!
問題描述
我已閱讀
請注意,在掩碼數組中填充了一個額外的維度,以便可以廣播.
I have read through the documentation for copyTo() but am still confused on how this function would be applied to the following code. This anwer states that we can use the copyTo function instead of 255-x. How would this function be applied in this case? I would appreciate a code snippet.
# Compute the gradient map of the image
def doLap(image):
# YOU SHOULD TUNE THESE VALUES TO SUIT YOUR NEEDS
kernel_size = 5 # Size of the laplacian window
blur_size = 5 # How big of a kernal to use for the gaussian blur
# Generally, keeping these two values the same or very close works well
# Also, odd numbers, please...
blurred = cv2.GaussianBlur(image, (blur_size,blur_size), 0)
return cv2.Laplacian(blurred, cv2.CV_64F, ksize=kernel_size)
#
# This routine finds the points of best focus in all images and produces a merged result...
#
def focus_stack(unimages):
images = align_images(unimages)
print "Computing the laplacian of the blurred images"
laps = []
for i in range(len(images)):
print "Lap {}".format(i)
laps.append(doLap(cv2.cvtColor(images[i],cv2.COLOR_BGR2GRAY)))
laps = np.asarray(laps)
print "Shape of array of laplacians = {}".format(laps.shape)
output = np.zeros(shape=images[0].shape, dtype=images[0].dtype)
abs_laps = np.absolute(laps)
maxima = abs_laps.max(axis=0)
bool_mask = abs_laps == maxima
mask = bool_mask.astype(np.uint8)
for i in range(0,len(images)):
output = cv2.bitwise_not(images[i],output, mask=mask[i])
return 255-output
解決方案
Sorry that I kind of misled you there. Although it works nicely in C++, I cannot find the binding in Python. You can, however, use numpy.copyto function.
Here is a small demo that shows that both method (bitwise_not
and copyto
) produce identical result.
import cv2
import numpy as np
# Create two images
im1 = np.zeros((100, 100, 3), np.uint8)
im1[:] = (255, 0, 0)
im2 = np.zeros((100, 100, 3), np.uint8)
im2[:] = (0, 255, 0)
# Generate a random mask
ran = np.random.randint(0, 2, (100, 100), np.uint8)
# List of images and masks
images = [im1, im2]
mask = [ran, 1-ran]
not_output = np.zeros((100, 100, 3), np.uint8)
copy_output = np.zeros((100, 100, 3), np.uint8)
for i in range(0, len(images)):
# Using the 'NOT' way
not_output = cv2.bitwise_not(images[i], not_output, mask=mask[i])
# Using the copyto way
np.copyto(copy_output, images[i], where=mask[i][:, :, None].astype(bool))
cv2.imwrite('not.png', 255 - not_output)
cv2.imwrite('copy.png', copy_output)
Note that an extra dimension was padded to the mask array so that it can be broadcasted.
這篇關于如何使用 opencv copyTo() 函數?的文章就介紹到這了,希望我們推薦的答案對大家有所幫助,也希望大家多多支持html5模板網!
【網站聲明】本站部分內容來源于互聯網,旨在幫助大家更快的解決問題,如果有圖片或者內容侵犯了您的權益,請聯系我們刪除處理,感謝您的支持!