久久久久久久av_日韩在线中文_看一级毛片视频_日本精品二区_成人深夜福利视频_武道仙尊动漫在线观看

    • <bdo id='jjMs3'></bdo><ul id='jjMs3'></ul>

    <tfoot id='jjMs3'></tfoot>

  • <legend id='jjMs3'><style id='jjMs3'><dir id='jjMs3'><q id='jjMs3'></q></dir></style></legend>
  • <i id='jjMs3'><tr id='jjMs3'><dt id='jjMs3'><q id='jjMs3'><span id='jjMs3'><b id='jjMs3'><form id='jjMs3'><ins id='jjMs3'></ins><ul id='jjMs3'></ul><sub id='jjMs3'></sub></form><legend id='jjMs3'></legend><bdo id='jjMs3'><pre id='jjMs3'><center id='jjMs3'></center></pre></bdo></b><th id='jjMs3'></th></span></q></dt></tr></i><div class="qwawimqqmiuu" id='jjMs3'><tfoot id='jjMs3'></tfoot><dl id='jjMs3'><fieldset id='jjMs3'></fieldset></dl></div>

        <small id='jjMs3'></small><noframes id='jjMs3'>

        如何修復/調試 scikit learn 中引發的這個多進程終

        How do I fix/debug this Multi-Process terminated worker error thrown in scikit learn(如何修復/調試 scikit learn 中引發的這個多進程終止工作錯誤)

            <tbody id='ElsNY'></tbody>

              <i id='ElsNY'><tr id='ElsNY'><dt id='ElsNY'><q id='ElsNY'><span id='ElsNY'><b id='ElsNY'><form id='ElsNY'><ins id='ElsNY'></ins><ul id='ElsNY'></ul><sub id='ElsNY'></sub></form><legend id='ElsNY'></legend><bdo id='ElsNY'><pre id='ElsNY'><center id='ElsNY'></center></pre></bdo></b><th id='ElsNY'></th></span></q></dt></tr></i><div class="qwawimqqmiuu" id='ElsNY'><tfoot id='ElsNY'></tfoot><dl id='ElsNY'><fieldset id='ElsNY'></fieldset></dl></div>
                <bdo id='ElsNY'></bdo><ul id='ElsNY'></ul>
                <legend id='ElsNY'><style id='ElsNY'><dir id='ElsNY'><q id='ElsNY'></q></dir></style></legend>
                <tfoot id='ElsNY'></tfoot>

                <small id='ElsNY'></small><noframes id='ElsNY'>

                • 本文介紹了如何修復/調試 scikit learn 中引發的這個多進程終止工作錯誤的處理方法,對大家解決問題具有一定的參考價值,需要的朋友們下面隨著小編來一起學習吧!

                  問題描述

                  限時送ChatGPT賬號..

                  我最近設置了一臺新機器,以幫助減少擬合模型和數據處理的運行時間.

                  I recently set up a new machine to aid in decreasing run times for fitting models and data wrangling.

                  我做了一些初步的基準測試,一切都很順利,但是當我嘗試在 scikit learn 中啟用多進程工作者時遇到了障礙.

                  I did some preliminary benchmarks and everything is mostly smoothe, but I ran into a snag when I tried enabling multi-process workers with in scikit learn.

                  我已將錯誤簡化為與我的原始代碼無關,因為我在不同的機器和 VM 上啟用了此功能而沒有問題.

                  I've simplified the error to not be associated with my original code as I enabled this feature without a problem on a different machine and a VM.

                  我還進行了內存分配檢查,以確保我的機器沒有用完可用的 RAM.我有 16gb 的 RAM,所以應該沒有問題,但我留下了測試的輸出,以防我錯過了一些東西.

                  I've also done memory allocation checks to make sure my machine wasn't running out of available RAM. I have 16gb of RAM so there should be no issue, but I've left the output of the test incase I missed something.

                  鑒于附近的回溯錯誤,我可以告訴我的操作系統正在殺死它,但對于我的生活,我無法弄清楚為什么.據我所知,我的代碼僅在僅使用單個 CPU 內核時才會運行.

                  Given the traceback error near I can tell my OS is killing this, but for the life of me I can't figure out why. Near as I can tell my code will ONLY run when it is just using a single CPU core.

                  我運行的是 Windows 10、AMD ryzen 7 2700x、16GB RAM

                  I'm running Windows 10, AMD ryzen 7 2700x, 16GB RAM

                  import sklearn
                  import numpy as np
                  import tracemalloc
                  import time
                  
                  
                  from sklearn.model_selection import cross_val_score
                  from numpy.random import randn
                  from sklearn.linear_model import Ridge
                  
                  
                  ##################### memory allocation snapshot
                  
                  tracemalloc.start()
                  
                  start_time = time.time()
                  snapshot1 = tracemalloc.take_snapshot()
                  
                  ###################### model
                  
                  X = randn(815000, 100)
                  y = randn(815000, 1)
                  mod = Ridge()
                  sc = cross_val_score(mod, X, y,verbose =10, n_jobs=3)
                  
                  ################### Second memory allocation snapshot
                  
                  snapshot2 = tracemalloc.take_snapshot()
                  top_stats = snapshot2.compare_to(snapshot1, 'lineno')
                  
                  print("[ Top 10 ]")
                  for stat in top_stats[:5]:
                  print(stat)
                  

                  由此得出的預期結果非常明顯,只是擬合模型的返回分數.

                  The expected results from this are pretty obvious, just a returned score with the fit model.

                  [Parallel(n_jobs=3)]: Using backend LokyBackend with 3 concurrent workers.
                  [Parallel(n_jobs=3)]: Done   3 out of   3 | elapsed:    0.2s remaining:    0.0s
                  ---------------------------------------------------------------------------
                  TerminatedWorkerError                     Traceback (most recent call last)
                  <ipython-input-18-b2bdfd425f82> in <module>
                       16 y = randn(815000, 1)
                       17 mod = Ridge()
                  ---> 18 sc = cross_val_score(mod, X, y,verbose =10, n_jobs=3)
                  
                  ..........
                  
                  TerminatedWorkerError: A worker process managed by the executor was unexpectedly terminated. 
                  This could be caused by a segmentation fault while calling the function or by an excessive memory usage causing the Operating System to kill the worker.
                  

                  內存輸出

                  [ Top 5 ]
                  <ipython-input-18-b2bdfd425f82>:15: size=622 MiB (+622 MiB), count=3 (+3), average=207 MiB
                  <ipython-input-18-b2bdfd425f82>:16: size=6367 KiB (+6367 KiB), count=3 (+3), average=2122 KiB
                  ~python37libinspect.py:732: size=37.2 KiB (+26.2 KiB), count=596 (+419), average=64 B
                  ~python37libsite-packagessklearnexternalsjoblib
                  umpy_pickle.py:292: size=7072 B (+3808 B), count=13 (+7), average=544 B
                  ~python37libpickle.py:549: size=5728 B (+3408 B), count=14 (+8), average=409 B
                  

                  推薦答案

                  我發現我的 scipy 模塊與我的 windows 10 C++ 可再發行版本不兼容.

                  I figured out the my scipy module was incompatible with my windows 10 C++ redistributable version.

                  我所做的只是下載最新的 Visual Studio 并安裝單個組件"部分中列出的 C++ 可再發行更新.

                  All i did was download the latest visual studio and installed the C++ redistributable update that is listed in the "individual components" section.

                  安裝后,我重新啟動計算機并運行.

                  Once I installed that I restarted my computer and ran.

                  import scipy
                  scipy.test()
                  

                  一旦它實際運行,我嘗試了上面的代碼塊并修復了它.

                  Once that was actually running I attempted my code block above and it fixed.

                  我認為這歸結為使用全新版本的 python 和 scipy 安裝舊版本的 windows 10

                  I think what this boils down to is installing an old build of windows 10 with a brand new version of python and scipy

                  這需要很長時間來解決和調試.希望對您有所幫助.

                  This took a LONG time to solve and debug. Hopefully it helps.

                  這篇關于如何修復/調試 scikit learn 中引發的這個多進程終止工作錯誤的文章就介紹到這了,希望我們推薦的答案對大家有所幫助,也希望大家多多支持html5模板網!

                  【網站聲明】本站部分內容來源于互聯網,旨在幫助大家更快的解決問題,如果有圖片或者內容侵犯了您的權益,請聯系我們刪除處理,感謝您的支持!

                  相關文檔推薦

                  What exactly is Python multiprocessing Module#39;s .join() Method Doing?(Python 多處理模塊的 .join() 方法到底在做什么?)
                  Passing multiple parameters to pool.map() function in Python(在 Python 中將多個參數傳遞給 pool.map() 函數)
                  multiprocessing.pool.MaybeEncodingError: #39;TypeError(quot;cannot serialize #39;_io.BufferedReader#39; objectquot;,)#39;(multiprocessing.pool.MaybeEncodingError: TypeError(cannot serialize _io.BufferedReader object,)) - IT屋-程序員軟件開
                  Python Multiprocess Pool. How to exit the script when one of the worker process determines no more work needs to be done?(Python 多進程池.當其中一個工作進程確定不再需要完成工作時,如何退出腳本?) - IT屋-程序員
                  How do you pass a Queue reference to a function managed by pool.map_async()?(如何將隊列引用傳遞給 pool.map_async() 管理的函數?)
                  yet another confusion with multiprocessing error, #39;module#39; object has no attribute #39;f#39;(與多處理錯誤的另一個混淆,“模塊對象沒有屬性“f)

                      <legend id='cq1yw'><style id='cq1yw'><dir id='cq1yw'><q id='cq1yw'></q></dir></style></legend>
                        <tbody id='cq1yw'></tbody>

                      <small id='cq1yw'></small><noframes id='cq1yw'>

                      • <bdo id='cq1yw'></bdo><ul id='cq1yw'></ul>
                        <i id='cq1yw'><tr id='cq1yw'><dt id='cq1yw'><q id='cq1yw'><span id='cq1yw'><b id='cq1yw'><form id='cq1yw'><ins id='cq1yw'></ins><ul id='cq1yw'></ul><sub id='cq1yw'></sub></form><legend id='cq1yw'></legend><bdo id='cq1yw'><pre id='cq1yw'><center id='cq1yw'></center></pre></bdo></b><th id='cq1yw'></th></span></q></dt></tr></i><div class="qwawimqqmiuu" id='cq1yw'><tfoot id='cq1yw'></tfoot><dl id='cq1yw'><fieldset id='cq1yw'></fieldset></dl></div>

                        • <tfoot id='cq1yw'></tfoot>
                          1. 主站蜘蛛池模板: 亚洲www啪成人一区二区 | 精品一区在线免费观看 | 欧美一区二区三区久久精品 | 亚洲在线免费 | 成人精品一区二区三区中文字幕 | 日日操网站 | 一区视频 | 国精品一区二区 | 亚洲免费视频网址 | 国产精品日韩在线 | 暖暖成人免费视频 | 亚洲天堂av网 | 久久久精品一区二区三区 | 欧美精品在线免费观看 | 草久在线视频 | 日本三级做a全过程在线观看 | 精品视频久久久 | 亚洲精选一区二区 | 日韩在线视频免费观看 | 国产一区亚洲 | 91一区 | 欧美高清视频一区 | 91久久精品一区二区二区 | 久久不卡区 | 日韩精品一区二区三区中文字幕 | 在线国产一区二区 | 亚洲成人免费电影 | 国产一区二区三区 | 欧美日韩精品久久久免费观看 | 成人av鲁丝片一区二区小说 | 91视频www.| 国产精品www | 国产精品乱码一区二区三区 | 中文字幕在线视频免费观看 | 天天爽夜夜爽精品视频婷婷 | 午夜在线观看视频 | 久久美女网 | 色视频在线免费观看 | 操操日 | 免费观看www | 久久综合影院 |