久久久久久久av_日韩在线中文_看一级毛片视频_日本精品二区_成人深夜福利视频_武道仙尊动漫在线观看

  • <legend id='oAhMZ'><style id='oAhMZ'><dir id='oAhMZ'><q id='oAhMZ'></q></dir></style></legend>
    <tfoot id='oAhMZ'></tfoot>

    1. <small id='oAhMZ'></small><noframes id='oAhMZ'>

      • <bdo id='oAhMZ'></bdo><ul id='oAhMZ'></ul>

        <i id='oAhMZ'><tr id='oAhMZ'><dt id='oAhMZ'><q id='oAhMZ'><span id='oAhMZ'><b id='oAhMZ'><form id='oAhMZ'><ins id='oAhMZ'></ins><ul id='oAhMZ'></ul><sub id='oAhMZ'></sub></form><legend id='oAhMZ'></legend><bdo id='oAhMZ'><pre id='oAhMZ'><center id='oAhMZ'></center></pre></bdo></b><th id='oAhMZ'></th></span></q></dt></tr></i><div class="qwawimqqmiuu" id='oAhMZ'><tfoot id='oAhMZ'></tfoot><dl id='oAhMZ'><fieldset id='oAhMZ'></fieldset></dl></div>

        車牌檢測有哪些好的算法?

        What are good algorithms for vehicle license plate detection?(車牌檢測有哪些好的算法?)
        <tfoot id='INQA0'></tfoot>

        • <bdo id='INQA0'></bdo><ul id='INQA0'></ul>
            <tbody id='INQA0'></tbody>

          1. <i id='INQA0'><tr id='INQA0'><dt id='INQA0'><q id='INQA0'><span id='INQA0'><b id='INQA0'><form id='INQA0'><ins id='INQA0'></ins><ul id='INQA0'></ul><sub id='INQA0'></sub></form><legend id='INQA0'></legend><bdo id='INQA0'><pre id='INQA0'><center id='INQA0'></center></pre></bdo></b><th id='INQA0'></th></span></q></dt></tr></i><div class="qwawimqqmiuu" id='INQA0'><tfoot id='INQA0'></tfoot><dl id='INQA0'><fieldset id='INQA0'></fieldset></dl></div>

              <small id='INQA0'></small><noframes id='INQA0'>

              <legend id='INQA0'><style id='INQA0'><dir id='INQA0'><q id='INQA0'></q></dir></style></legend>

                  本文介紹了車牌檢測有哪些好的算法?的處理方法,對大家解決問題具有一定的參考價值,需要的朋友們下面隨著小編來一起學習吧!

                  問題描述

                  限時送ChatGPT賬號..

                  背景

                  對于我在大學的最后一個項目,我正在開發一個車牌檢測應用程序.我認為自己是一名中級程序員,但是我的數學知識缺乏中學以上的任何知識,這使得生成正確的公式比應該做的更難.

                  我花了很多時間查找學術論文,例如:

                  • 解決方案

                    您可以采取多種方法,但首先想到的策略是:

                    • 發現/研究:確定您可能需要識別的一組顏色和字體.如果您的樣本圖片代表了大多數英國車牌,那么您的工作就會變得更容易.例如.簡單、單一的字體和白色背景上的黑色字體
                    • 代碼:嘗試識別圖像的矩形區域,其中顏色主要是白色和黑色.這不是一個非常繁重的數學問題,它應該讓您專注于車牌區域.
                    • 代碼:對您的子區域進行一些清理,例如將其轉換為純黑白(單色),并可能縮放/移動成一個漂亮、緊湊的矩形.
                    • 使用 API:接下來在您的子選擇圖像區域上使用現有的 OCR(光學字符識別)算法,以便查看您是否可以閱讀文本.

                    就像我說的那樣,這是許多策略中的一種,但它被認為是一種需要最少大量數學運算的策略……也就是說,如果您能找到適合您的 OCR 實現.

                    Background

                    For my final project at university, I'm developing a vehicle license plate detection application. I consider myself an intermediate programmer, however my mathematics knowledge lacks anything above secondary school, which makes producing the right formulas harder than it probably should be.

                    I've spend a good amount of time looking up academic papers such as:

                    • Detecting Vehicle License Plates in Images
                    • Robust License Plate Detection using Image Saliency
                    • Local Enhancement of Car Image for License Plate Detection

                    When it comes to the math, I'm lost. Due to this testing various graphic images proved productive, for example:

                    to

                    However this approach only worked to that particular image, and if the techniques were applied to different images, I'm sure a poorer conversion would occur. I've read about a formula called the "bottom hat morphology transform", which does the following:

                    Basically, the trans- formation keeps all the dark details of the picture, and eliminates everything else (including bigger dark regions and light regions).

                    I can't find much information on this, however the image within the documentation near the end of the report shows its effectiveness.

                    Other constraints

                    • Developing in C#
                    • Confining the project to UK registration plates only
                    • I can choose the images to convert as a demonstration

                    Question

                    I need advice on what transformation techniques I should focus on developing, and what algorithms can help me.

                    EDIT: New information present on Continued - Vehicle License Plate Detection

                    解決方案

                    There are a number of approaches you can take but the first strategy that pops into mind is to:

                    • Discovery/research: Identify the set of colors and fonts that you may need to identify. If your sample picture is representative of most British plates then your job is made easier. E.g. Simple, singular font and black lettering on a white background
                    • Code: Attempt to identify a rectangular region of an image where the colors are predominantly white and black. This is not a terribly math-heavy problem and it should give you the license plate region to concentrate on.
                    • Code: Do some clean up on your subregion such conversion to pure black and white (monochrome) and perhaps scaling/shifting into a nice, tight rectangle.
                    • Use API: Next employ an existing OCR (optical character recognition) algorithm on your sub-selected image region so see if you can read the text.

                    Like I said, this is one strategy of many but it comes to mind as one requiring the least amount of heavy math... that is if you can find an OCR implementation that will work for you.

                    這篇關于車牌檢測有哪些好的算法?的文章就介紹到這了,希望我們推薦的答案對大家有所幫助,也希望大家多多支持html5模板網!

                    【網站聲明】本站部分內容來源于互聯網,旨在幫助大家更快的解決問題,如果有圖片或者內容侵犯了您的權益,請聯系我們刪除處理,感謝您的支持!

                  相關文檔推薦

                  onClick event for Image in Unity(Unity中圖像的onClick事件)
                  Running Total C#(運行總 C#)
                  Deleting a directory when clicked on a hyperlink with JAvascript.ASP.NET C#(單擊帶有 JAvascript.ASP.NET C# 的超鏈接時刪除目錄)
                  asp.net listview highlight row on click(asp.net listview 在單擊時突出顯示行)
                  Calling A Button OnClick from a function(從函數調用按鈕 OnClick)
                  ASP.net C# Gridview ButtonField onclick event(ASP.net C# Gridview ButtonField onclick 事件)
                    <tbody id='mBOXm'></tbody>

                  <small id='mBOXm'></small><noframes id='mBOXm'>

                  <legend id='mBOXm'><style id='mBOXm'><dir id='mBOXm'><q id='mBOXm'></q></dir></style></legend>

                    • <bdo id='mBOXm'></bdo><ul id='mBOXm'></ul>
                    • <tfoot id='mBOXm'></tfoot>

                      1. <i id='mBOXm'><tr id='mBOXm'><dt id='mBOXm'><q id='mBOXm'><span id='mBOXm'><b id='mBOXm'><form id='mBOXm'><ins id='mBOXm'></ins><ul id='mBOXm'></ul><sub id='mBOXm'></sub></form><legend id='mBOXm'></legend><bdo id='mBOXm'><pre id='mBOXm'><center id='mBOXm'></center></pre></bdo></b><th id='mBOXm'></th></span></q></dt></tr></i><div class="qwawimqqmiuu" id='mBOXm'><tfoot id='mBOXm'></tfoot><dl id='mBOXm'><fieldset id='mBOXm'></fieldset></dl></div>

                            主站蜘蛛池模板: 999热精品 | 日韩久久久一区二区 | 天天干天天干 | 福利久久 | 精品欧美色视频网站在线观看 | 久久久精选 | 免费美女网站 | 日韩视频a | 精品99在线 | 一区二区三区视频在线观看 | 久久夜色精品国产 | 欧美理论在线观看 | 久久亚洲精品视频 | 久久精品视频一区二区三区 | 日本在线视频一区二区 | 国产日韩一区 | 狠狠天天 | 日韩在线免费电影 | 国产精品久久久久久久久久久久久久 | 天天色综 | www.一区二区 | 成人亚洲综合 | 国产9999精品 | 欧美成年黄网站色视频 | 日韩中文在线观看 | 欧美美女二区 | 精品96久久久久久中文字幕无 | 亚洲欧美日韩精品久久亚洲区 | 亚洲精品在线视频 | 国产精品久久久久一区二区三区 | 天天躁日日躁xxxxaaaa | 欧美成人精品一区二区三区 | 亚洲一区二区三区视频免费观看 | 91精品国产综合久久福利软件 | 久久噜噜噜精品国产亚洲综合 | 色综合网站 | 久久国产精品视频观看 | 久久99蜜桃综合影院免费观看 | 亚洲欧美中文日韩在线v日本 | 一区二区三区在线免费观看 | 干干干操操操 |