久久久久久久av_日韩在线中文_看一级毛片视频_日本精品二区_成人深夜福利视频_武道仙尊动漫在线观看

        <bdo id='5KU2A'></bdo><ul id='5KU2A'></ul>

      <small id='5KU2A'></small><noframes id='5KU2A'>

      <i id='5KU2A'><tr id='5KU2A'><dt id='5KU2A'><q id='5KU2A'><span id='5KU2A'><b id='5KU2A'><form id='5KU2A'><ins id='5KU2A'></ins><ul id='5KU2A'></ul><sub id='5KU2A'></sub></form><legend id='5KU2A'></legend><bdo id='5KU2A'><pre id='5KU2A'><center id='5KU2A'></center></pre></bdo></b><th id='5KU2A'></th></span></q></dt></tr></i><div class="qwawimqqmiuu" id='5KU2A'><tfoot id='5KU2A'></tfoot><dl id='5KU2A'><fieldset id='5KU2A'></fieldset></dl></div>
      <legend id='5KU2A'><style id='5KU2A'><dir id='5KU2A'><q id='5KU2A'></q></dir></style></legend>
      <tfoot id='5KU2A'></tfoot>

      NIFI - QueryDatabaseTable 處理器.如何查詢被修改的行

      NIFI - QueryDatabaseTable processor. How to query rows which is modified?(NIFI - QueryDatabaseTable 處理器.如何查詢被修改的行?)
      1. <tfoot id='IdhUj'></tfoot>
        <i id='IdhUj'><tr id='IdhUj'><dt id='IdhUj'><q id='IdhUj'><span id='IdhUj'><b id='IdhUj'><form id='IdhUj'><ins id='IdhUj'></ins><ul id='IdhUj'></ul><sub id='IdhUj'></sub></form><legend id='IdhUj'></legend><bdo id='IdhUj'><pre id='IdhUj'><center id='IdhUj'></center></pre></bdo></b><th id='IdhUj'></th></span></q></dt></tr></i><div class="qwawimqqmiuu" id='IdhUj'><tfoot id='IdhUj'></tfoot><dl id='IdhUj'><fieldset id='IdhUj'></fieldset></dl></div>
      2. <legend id='IdhUj'><style id='IdhUj'><dir id='IdhUj'><q id='IdhUj'></q></dir></style></legend>
            <tbody id='IdhUj'></tbody>

          <small id='IdhUj'></small><noframes id='IdhUj'>

              <bdo id='IdhUj'></bdo><ul id='IdhUj'></ul>
                本文介紹了NIFI - QueryDatabaseTable 處理器.如何查詢被修改的行?的處理方法,對(duì)大家解決問(wèn)題具有一定的參考價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)吧!

                問(wèn)題描述

                我正在研究 NIFI 數(shù)據(jù)流,其中我的用例是獲取 mysql 表數(shù)據(jù)并將其放入 hdfs/本地文件系統(tǒng).

                我構(gòu)建了一個(gè)數(shù)據(jù)流管道,其中使用了 querydatabaseTable 處理器 ------ ConvertRecord --- putFile 處理器.

                我的表架構(gòu) ---> id,name,city,Created_date

                即使我在表中插入新記錄,我也能在目的地接收文件

                但是,但是……

                當(dāng)我更新現(xiàn)有行時(shí),處理器沒(méi)有獲取這些記錄,看起來(lái)它有一些限制.

                我的問(wèn)題是,如何處理這種情況?由任何其他處理器或需要更新某些屬性.

                請(qǐng)人幫忙@Bryan Bende

                解決方案

                QueryDatabaseTable Processor 需要被告知它可以使用哪些列來(lái)識(shí)別新數(shù)據(jù).

                串行 idcreated 時(shí)間戳是不夠的.

                不要忘記將 Maximum-value Columns 設(shè)置為這些列.

                所以我基本上要說(shuō)的是:

                <塊引用>

                如果你自己不能判斷這是sql中的新記錄,nifi也不能.

                I am working on NIFI Data Flow where my usecase is fetch mysql table data and put into hdfs/local file system.

                I have built a data flow pipeline where i used querydatabaseTable processor ------ ConvertRecord --- putFile processor.

                My Table Schema ---> id,name,city,Created_date

                I am able to receive files in destination even when i am inserting new records in table

                But, but ....

                When i am updating exsiting rows then processor is not fetching those records looks like it has some limitation.

                My Question is ,How to handle this scenario? either by any other processor or need to update some property.

                PLease someone help @Bryan Bende

                解決方案

                QueryDatabaseTable Processor needs to be informed which columns it can use to identify new data.

                A serial id or created timestamp is not sufficient.

                From the documentation:

                Maximum-value Columns:

                A comma-separated list of column names. The processor will keep track of the maximum value for each column that has been returned since the processor started running. Using multiple columns implies an order to the column list, and each column's values are expected to increase more slowly than the previous columns' values. Thus, using multiple columns implies a hierarchical structure of columns, which is usually used for partitioning tables. This processor can be used to retrieve only those rows that have been added/updated since the last retrieval. Note that some JDBC types such as bit/boolean are not conducive to maintaining maximum value, so columns of these types should not be listed in this property, and will result in error(s) during processing. If no columns are provided, all rows from the table will be considered, which could have a performance impact. NOTE: It is important to use consistent max-value column names for a given table for incremental fetch to work properly.

                Judging be the table scheme, there is no sql-way of telling whether data was updated.

                There are many ways to solve this. In your case, the easiest thing to do might be to rename column created to modified and set to now() on updates or to work with a second timestamp column.

                So for instance

                | stamp_updated | timestamp | CURRENT_TIMESTAMP   | on update CURRENT_TIMESTAMP |
                

                is the new column added. In the processor you use the stamp_updated column to identify new data

                Don't forget to set Maximum-value Columns to those columns.

                So what I am basically saying is:

                If you cannot tell that it is a new record in sql yourself, nifi cannot either.

                這篇關(guān)于NIFI - QueryDatabaseTable 處理器.如何查詢被修改的行?的文章就介紹到這了,希望我們推薦的答案對(duì)大家有所幫助,也希望大家多多支持html5模板網(wǎng)!

                【網(wǎng)站聲明】本站部分內(nèi)容來(lái)源于互聯(lián)網(wǎng),旨在幫助大家更快的解決問(wèn)題,如果有圖片或者內(nèi)容侵犯了您的權(quán)益,請(qǐng)聯(lián)系我們刪除處理,感謝您的支持!

                相關(guān)文檔推薦

                How to use windowing functions efficiently to decide next N number of rows based on N number of previous values(如何有效地使用窗口函數(shù)根據(jù) N 個(gè)先前值來(lái)決定接下來(lái)的 N 個(gè)行)
                reuse the result of a select expression in the quot;GROUP BYquot; clause?(在“GROUP BY中重用選擇表達(dá)式的結(jié)果;條款?)
                Does ignore option of Pyspark DataFrameWriter jdbc function ignore entire transaction or just offending rows?(Pyspark DataFrameWriter jdbc 函數(shù)的 ignore 選項(xiàng)是忽略整個(gè)事務(wù)還是只是有問(wèn)題的行?) - IT屋-程序員軟件開(kāi)發(fā)技
                Error while using INSERT INTO table ON DUPLICATE KEY, using a for loop array(使用 INSERT INTO table ON DUPLICATE KEY 時(shí)出錯(cuò),使用 for 循環(huán)數(shù)組)
                pyspark mysql jdbc load An error occurred while calling o23.load No suitable driver(pyspark mysql jdbc load 調(diào)用 o23.load 時(shí)發(fā)生錯(cuò)誤 沒(méi)有合適的驅(qū)動(dòng)程序)
                How to integrate Apache Spark with MySQL for reading database tables as a spark dataframe?(如何將 Apache Spark 與 MySQL 集成以將數(shù)據(jù)庫(kù)表作為 Spark 數(shù)據(jù)幀讀取?)

                  <tfoot id='Ordau'></tfoot>
                  <legend id='Ordau'><style id='Ordau'><dir id='Ordau'><q id='Ordau'></q></dir></style></legend>
                  <i id='Ordau'><tr id='Ordau'><dt id='Ordau'><q id='Ordau'><span id='Ordau'><b id='Ordau'><form id='Ordau'><ins id='Ordau'></ins><ul id='Ordau'></ul><sub id='Ordau'></sub></form><legend id='Ordau'></legend><bdo id='Ordau'><pre id='Ordau'><center id='Ordau'></center></pre></bdo></b><th id='Ordau'></th></span></q></dt></tr></i><div class="qwawimqqmiuu" id='Ordau'><tfoot id='Ordau'></tfoot><dl id='Ordau'><fieldset id='Ordau'></fieldset></dl></div>

                    <tbody id='Ordau'></tbody>
                    <bdo id='Ordau'></bdo><ul id='Ordau'></ul>

                        • <small id='Ordau'></small><noframes id='Ordau'>

                        • 主站蜘蛛池模板: 国产女人与拘做受免费视频 | 一区二区三区四区免费在线观看 | 精产国产伦理一二三区 | 国产乱码精品一区二区三区忘忧草 | 色偷偷人人澡人人爽人人模 | 亚洲欧美国产一区二区三区 | 日日淫 | 亚洲精品一区二区三区在线 | 中文字幕一区二区三区乱码图片 | 在线观看国产视频 | 91在线一区 | 亚洲精品电影网在线观看 | 国产粉嫩尤物极品99综合精品 | 午夜影院普通用户体验区 | 男人的天堂在线视频 | 中文字幕亚洲精品 | 91av亚洲 | 亚洲欧洲日韩 | 日韩手机在线视频 | 亚洲午夜在线 | av在线电影网站 | 久久网一区二区三区 | 噜噜噜色网 | 亚洲人人舔人人 | 特级特黄特色的免费大片 | 久久亚洲经典 | 毛片一区二区三区 | 欧美日韩a| 四虎伊人 | 国产亚洲一区二区三区 | 成人激情视频免费观看 | 黄视频免费在线 | 一级电影免费看 | 国产电影一区二区三区爱妃记 | 91精品国产一区二区三区香蕉 | 一区二区亚洲 | 久久99精品久久久久久 | 午夜看看| 久久影院一区 | 欧美成人一级 | 欧美a在线|