久久久久久久av_日韩在线中文_看一级毛片视频_日本精品二区_成人深夜福利视频_武道仙尊动漫在线观看

<small id='qDZrG'></small><noframes id='qDZrG'>

    <tfoot id='qDZrG'></tfoot>
    <legend id='qDZrG'><style id='qDZrG'><dir id='qDZrG'><q id='qDZrG'></q></dir></style></legend>

      <i id='qDZrG'><tr id='qDZrG'><dt id='qDZrG'><q id='qDZrG'><span id='qDZrG'><b id='qDZrG'><form id='qDZrG'><ins id='qDZrG'></ins><ul id='qDZrG'></ul><sub id='qDZrG'></sub></form><legend id='qDZrG'></legend><bdo id='qDZrG'><pre id='qDZrG'><center id='qDZrG'></center></pre></bdo></b><th id='qDZrG'></th></span></q></dt></tr></i><div class="qwawimqqmiuu" id='qDZrG'><tfoot id='qDZrG'></tfoot><dl id='qDZrG'><fieldset id='qDZrG'></fieldset></dl></div>
      • <bdo id='qDZrG'></bdo><ul id='qDZrG'></ul>
      1. Spark SQL/Hive 查詢永遠(yuǎn)需要加入

        Spark SQL/Hive Query Takes Forever With Join(Spark SQL/Hive 查詢永遠(yuǎn)需要加入)

          <tfoot id='JwRW7'></tfoot>
          <i id='JwRW7'><tr id='JwRW7'><dt id='JwRW7'><q id='JwRW7'><span id='JwRW7'><b id='JwRW7'><form id='JwRW7'><ins id='JwRW7'></ins><ul id='JwRW7'></ul><sub id='JwRW7'></sub></form><legend id='JwRW7'></legend><bdo id='JwRW7'><pre id='JwRW7'><center id='JwRW7'></center></pre></bdo></b><th id='JwRW7'></th></span></q></dt></tr></i><div class="qwawimqqmiuu" id='JwRW7'><tfoot id='JwRW7'></tfoot><dl id='JwRW7'><fieldset id='JwRW7'></fieldset></dl></div>
          • <bdo id='JwRW7'></bdo><ul id='JwRW7'></ul>

              <legend id='JwRW7'><style id='JwRW7'><dir id='JwRW7'><q id='JwRW7'></q></dir></style></legend>
                <tbody id='JwRW7'></tbody>
            1. <small id='JwRW7'></small><noframes id='JwRW7'>

                • 本文介紹了Spark SQL/Hive 查詢永遠(yuǎn)需要加入的處理方法,對(duì)大家解決問題具有一定的參考價(jià)值,需要的朋友們下面隨著小編來一起學(xué)習(xí)吧!

                  問題描述

                  所以我正在做一些應(yīng)該很簡單的事情,但顯然它不在 Spark SQL 中.

                  So I'm doing something that should be simple, but apparently it's not in Spark SQL.

                  如果我在 MySQL 中運(yùn)行以下查詢,查詢會(huì)在幾分之一秒內(nèi)完成:

                  If I run the following query in MySQL, the query finishes in a fraction of a second:

                  SELECT ua.address_id
                  FROM user u
                  inner join user_address ua on ua.address_id = u.user_address_id
                  WHERE u.user_id = 123;
                  

                  但是,在 Spark (1.5.1) 下的 HiveContext 中運(yùn)行相同的查詢需要超過 13 秒.添加更多連接會(huì)使查詢運(yùn)行很長時(shí)間(超過 10 分鐘).我不確定我在這里做錯(cuò)了什么以及如何加快速度.

                  However, running the same query in HiveContext under Spark (1.5.1) takes more than 13 seconds. Adding more joins makes the query run for a very very long time (over 10 minutes). I'm not sure what I'm doing wrong here and how I can speed things up.

                  這些表是 MySQL 表,它們作為臨時(shí)表加載到 Hive 上下文中.它在單個(gè)實(shí)例中運(yùn)行,數(shù)據(jù)庫在遠(yuǎn)程機(jī)器上.

                  The tables are MySQL tables that are loaded into the Hive Context as temporary tables.This is running in a single instance, with the database on a remote machine.

                  • 用戶表大約有 480 萬行.
                  • user_address 表有 350,000 行.

                  表有外鍵字段,但在數(shù)據(jù)庫中沒有定義明確的 fk 關(guān)系.我正在使用 InnoDB.

                  The tables have foreign key fields, but no explicit fk relationships is defined in the db. I'm using InnoDB.

                  Spark 中的執(zhí)行計(jì)劃:

                  The execution plan in Spark:

                  計(jì)劃:

                  掃描JDBCRelation(jdbc:mysql://.user,[Lorg.apache.spark.Partition;@596f5dfc,{user=, password=, url=jdbc:mysql://, dbtable=user})[address_id#0L,user_address_id#27L]

                  Scan JDBCRelation(jdbc:mysql://.user,[Lorg.apache.spark.Partition;@596f5dfc, {user=, password=, url=jdbc:mysql://, dbtable=user}) [address_id#0L,user_address_id#27L]

                  過濾器 (user_id#0L = 123) 掃描JDBCRelation(jdbc:mysql://.user_address,[Lorg.apache.spark.Partition;@2ce558f3,{user=, password=,url=jdbc:mysql://, dbtable=user_address})[address_id#52L]

                  Filter (user_id#0L = 123) Scan JDBCRelation(jdbc:mysql://.user_address, [Lorg.apache.spark.Partition;@2ce558f3,{user=, password=, url=jdbc:mysql://, dbtable=user_address})[address_id#52L]

                  ConvertToUnsafe ConvertToUnsafe

                  ConvertToUnsafe ConvertToUnsafe

                  TungstenExchange hashpartitioning(address_id#52L) TungstenExchangehashpartitioning(user_address_id#27L) TungstenSort [address_id#52LASC], false, 0 TungstenSort [user_address_id#27L ASC], false, 0

                  TungstenExchange hashpartitioning(address_id#52L) TungstenExchange hashpartitioning(user_address_id#27L) TungstenSort [address_id#52L ASC], false, 0 TungstenSort [user_address_id#27L ASC], false, 0

                  SortMergeJoin [user_address_id#27L], [address_id#52L]

                  SortMergeJoin [user_address_id#27L], [address_id#52L]

                  == 物理計(jì)劃 == TungstenProject [address_id#0L]

                  == Physical Plan == TungstenProject [address_id#0L]

                  推薦答案

                  首先,您執(zhí)行的查詢類型極其低效.至于現(xiàn)在(Spark 1.5.0*)要執(zhí)行這樣的連接,每次執(zhí)行查詢時(shí)都必須對(duì)兩個(gè)表進(jìn)行混洗/散列分區(qū).對(duì)于 users 表,其中 user_id = 123 謂詞最有可能被下推,但仍然需要對(duì) user_address.

                  First of all type of query you perform is extremely inefficient. As for now (Spark 1.5.0*) to perform join like this, both tables has to be shuffled / hash-partitioned each time query is executed. It shouldn't be a problem in case of users table where user_id = 123 predicate is most likely pushed-down but still requires full shuffle on user_address.

                  此外,如果表只注冊(cè)而不緩存,那么每次執(zhí)行此查詢都會(huì)從 MySQL 獲取整個(gè) user_address 表到 Spark.

                  Moreover, if tables are only registered and not cached, then every execution of this query will fetch a whole user_address table from MySQL to Spark.

                  我不確定我在這里做錯(cuò)了什么以及如何加快速度.

                  I'm not sure what I'm doing wrong here and how I can speed things up.

                  不清楚為什么要將 Spark 用于應(yīng)用程序,但單機(jī)設(shè)置、小數(shù)據(jù)和查詢類型表明 Spark 不適合這里.

                  It is not exactly clear why you want to use Spark for application but single machine setup, small data and type of queries suggest that Spark is not a good fit here.

                  一般來說,如果應(yīng)用程序邏輯需要單條記錄訪問,那么 Spark SQL 的性能就不會(huì)很好.它專為分析查詢而設(shè)計(jì),而不是作為 OLTP 數(shù)據(jù)庫的替代品.

                  Generally speaking if application logic requires a single record access then Spark SQL won't perform well. It is designed for analytical queries not as a OLTP database replacement.

                  如果單個(gè)表/數(shù)據(jù)框小得多,您可以嘗試廣播.

                  If a single table / data frame is much smaller you could try broadcasting.

                  import org.apache.spark.sql.DataFrame
                  import org.apache.spark.sql.functions.broadcast
                  
                  val user: DataFrame = ???
                  val user_address: DataFrame = ???
                  
                  val userFiltered = user.where(???)
                  
                  user_addresses.join(
                    broadcast(userFiltered), $"address_id" === $"user_address_id")
                  

                  <小時(shí)>

                  * 這應(yīng)該在 Spark 1.6.0 中改變,SPARK-11410應(yīng)該啟用持久表分區(qū).

                  這篇關(guān)于Spark SQL/Hive 查詢永遠(yuǎn)需要加入的文章就介紹到這了,希望我們推薦的答案對(duì)大家有所幫助,也希望大家多多支持html5模板網(wǎng)!

                  【網(wǎng)站聲明】本站部分內(nèi)容來源于互聯(lián)網(wǎng),旨在幫助大家更快的解決問題,如果有圖片或者內(nèi)容侵犯了您的權(quán)益,請(qǐng)聯(lián)系我們刪除處理,感謝您的支持!

                  相關(guān)文檔推薦

                  How to use windowing functions efficiently to decide next N number of rows based on N number of previous values(如何有效地使用窗口函數(shù)根據(jù) N 個(gè)先前值來決定接下來的 N 個(gè)行)
                  reuse the result of a select expression in the quot;GROUP BYquot; clause?(在“GROUP BY中重用選擇表達(dá)式的結(jié)果;條款?)
                  Does ignore option of Pyspark DataFrameWriter jdbc function ignore entire transaction or just offending rows?(Pyspark DataFrameWriter jdbc 函數(shù)的 ignore 選項(xiàng)是忽略整個(gè)事務(wù)還是只是有問題的行?) - IT屋-程序員軟件開發(fā)技
                  Error while using INSERT INTO table ON DUPLICATE KEY, using a for loop array(使用 INSERT INTO table ON DUPLICATE KEY 時(shí)出錯(cuò),使用 for 循環(huán)數(shù)組)
                  pyspark mysql jdbc load An error occurred while calling o23.load No suitable driver(pyspark mysql jdbc load 調(diào)用 o23.load 時(shí)發(fā)生錯(cuò)誤 沒有合適的驅(qū)動(dòng)程序)
                  How to integrate Apache Spark with MySQL for reading database tables as a spark dataframe?(如何將 Apache Spark 與 MySQL 集成以將數(shù)據(jù)庫表作為 Spark 數(shù)據(jù)幀讀取?)
                    <tfoot id='RnxHT'></tfoot>
                    • <bdo id='RnxHT'></bdo><ul id='RnxHT'></ul>

                        <legend id='RnxHT'><style id='RnxHT'><dir id='RnxHT'><q id='RnxHT'></q></dir></style></legend>

                          <tbody id='RnxHT'></tbody>

                            <i id='RnxHT'><tr id='RnxHT'><dt id='RnxHT'><q id='RnxHT'><span id='RnxHT'><b id='RnxHT'><form id='RnxHT'><ins id='RnxHT'></ins><ul id='RnxHT'></ul><sub id='RnxHT'></sub></form><legend id='RnxHT'></legend><bdo id='RnxHT'><pre id='RnxHT'><center id='RnxHT'></center></pre></bdo></b><th id='RnxHT'></th></span></q></dt></tr></i><div class="qwawimqqmiuu" id='RnxHT'><tfoot id='RnxHT'></tfoot><dl id='RnxHT'><fieldset id='RnxHT'></fieldset></dl></div>

                            <small id='RnxHT'></small><noframes id='RnxHT'>

                          • 主站蜘蛛池模板: 久久福利网站 | 欧美成人一区二免费视频软件 | 做a的各种视频 | 看黄在线| 一区免费观看 | 亚洲风情在线观看 | 国产一区二区三区色淫影院 | 日日久 | 久久性色| 日韩成人在线观看 | 在线看av网址 | av日韩在线播放 | 91精品久久久久久久久久 | 亚洲欧美日韩精品 | 日韩av啪啪网站大全免费观看 | 嫩草伊人 | 中文字幕一区二区三区乱码在线 | 久久亚洲欧美日韩精品专区 | 免费美女网站 | 龙珠z国语版在线观看 | 五月激情综合 | 中文字幕精品一区二区三区精品 | 亚洲不卡在线观看 | 国产精品一区二区三区四区五区 | 欧美性a视频 | 久久最新 | 精品亚洲一区二区三区四区五区 | 日韩一区在线视频 | 日本精品久久久久久久 | 欧美日韩高清免费 | 一级毛片免费完整视频 | 丁香婷婷成人 | 中文字幕一区在线观看视频 | 欧美日韩一区二区在线 | 操人视频在线观看 | 久久成人精品 | 精品免费观看 | 中文字幕日韩欧美一区二区三区 | 精品在线99| 欧美黑人一级爽快片淫片高清 | www.婷婷亚洲基地 |