久久久久久久av_日韩在线中文_看一级毛片视频_日本精品二区_成人深夜福利视频_武道仙尊动漫在线观看

OpenCV 中的圖像轉換

Image transformation in OpenCV(OpenCV 中的圖像轉換)
本文介紹了OpenCV 中的圖像轉換的處理方法,對大家解決問題具有一定的參考價值,需要的朋友們下面隨著小編來一起學習吧!

問題描述

這個問題與這個問題有關: 函數.我寫了一個快速腳本來展示如何做到這一點.如您所見,這在 Python 中非常簡單.這是測試圖片:

這是變形后的結果:

這里是代碼:

導入 cv2從 scipy.interpolate 導入網格數據將 numpy 導入為 npgrid_x, grid_y = np.mgrid[0:149:150j, 0:149:150j]目的地 = np.array([[0,0], [0,49], [0,99], [0,149],[49,0],[49,49],[49,99],[49,149],[99,0],[99,49],[99,99],[99,149],[149,0],[149,49],[149,99],[149,149]])源 = np.array([[22,22], [24,68], [26,116], [25,162],[64,19],[65,64],[65,114],[64,159],[107,16],[108,62],[108,111],[107,157],[151,11],[151,58],[151,107],[151,156]])grid_z = griddata(目標,源,(grid_x,grid_y),方法='cubic')map_x = np.append([], [ar[:,1] for ar in grid_z]).reshape(150,150)map_y = np.append([], [ar[:,0] for ar in grid_z]).reshape(150,150)map_x_32 = map_x.astype('float32')map_y_32 = map_y.astype('float32')orig = cv2.imread("tmp.png")扭曲 = cv2.remap(原始,map_x_32,map_y_32,cv2.INTER_CUBIC)cv2.imwrite("warped.png", 扭曲)

我想你可以用谷歌搜索一下 griddata 是做什么的.簡而言之,它進行插值,在這里我們使用它來將稀疏映射轉換為密集映射,因為 cv2.remap 需要密集映射.我們只需要將值轉換為 float32,因為 OpenCV 抱怨 float64 類型.請告訴我進展如何.

更新:如果你不想依賴Scipy,一種方法是在你的代碼中實現2d插值功能,例如看Scipy中griddata的源代碼或更簡單的像這樣 http://inasafe.readthedocs.org/en/latest/_modules/engine/interpolation2d.html 僅依賴于 numpy.不過,我建議為此使用 Scipy 或其他庫,盡管我明白為什么只需要 CV2 和 numpy 對于這樣的情況可能會更好.我想聽聽您的最終代碼如何解決數獨問題.

This question is related to this question: How to remove convexity defects in sudoku square

I was trying to implement nikie's answer in Mathematica to OpenCV-Python. But i am stuck at the final step of procedure.

ie I got the all intersection points in square like below:

Now, i want to transform this into a perfect square of size (450,450) as given below:

(Never mind the brightness difference of two images).

Question: How can i do this in OpenCV-Python? I am using cv2 version.

解決方案

Apart from etarion's suggestion, you could also use the remap function. I wrote a quick script to show how you can do this. As you see coding this is really easy in Python. This is the test image:

and this is the result after warping:

And here is the code:

import cv2
from scipy.interpolate import griddata
import numpy as np

grid_x, grid_y = np.mgrid[0:149:150j, 0:149:150j]
destination = np.array([[0,0], [0,49], [0,99], [0,149],
                  [49,0],[49,49],[49,99],[49,149],
                  [99,0],[99,49],[99,99],[99,149],
                  [149,0],[149,49],[149,99],[149,149]])
source = np.array([[22,22], [24,68], [26,116], [25,162],
                  [64,19],[65,64],[65,114],[64,159],
                  [107,16],[108,62],[108,111],[107,157],
                  [151,11],[151,58],[151,107],[151,156]])
grid_z = griddata(destination, source, (grid_x, grid_y), method='cubic')
map_x = np.append([], [ar[:,1] for ar in grid_z]).reshape(150,150)
map_y = np.append([], [ar[:,0] for ar in grid_z]).reshape(150,150)
map_x_32 = map_x.astype('float32')
map_y_32 = map_y.astype('float32')

orig = cv2.imread("tmp.png")
warped = cv2.remap(orig, map_x_32, map_y_32, cv2.INTER_CUBIC)
cv2.imwrite("warped.png", warped)

I suppose you can google and find what griddata does. In short, it does interpolation and here we use it to convert sparse mappings to dense mappings as cv2.remap requires dense mappings. We just need to convert to the values to float32 as OpenCV complains about the float64 type. Please let me know how it goes.

Update: If you don't want to rely on Scipy, one way is to implement the 2d interpolation function in your code, for example, see the source code of griddata in Scipy or a simpler one like this http://inasafe.readthedocs.org/en/latest/_modules/engine/interpolation2d.html which depends only on numpy. Though, I'd suggest to use Scipy or another library for this, though I see why requiring only CV2 and numpy may be better for a case like this. I'd like to hear how your final code solves Sudokus.

這篇關于OpenCV 中的圖像轉換的文章就介紹到這了,希望我們推薦的答案對大家有所幫助,也希望大家多多支持html5模板網!

【網站聲明】本站部分內容來源于互聯網,旨在幫助大家更快的解決問題,如果有圖片或者內容侵犯了您的權益,請聯系我們刪除處理,感謝您的支持!

相關文檔推薦

How to draw a rectangle around a region of interest in python(如何在python中的感興趣區域周圍繪制一個矩形)
How can I detect and track people using OpenCV?(如何使用 OpenCV 檢測和跟蹤人員?)
How to apply threshold within multiple rectangular bounding boxes in an image?(如何在圖像的多個矩形邊界框中應用閾值?)
How can I download a specific part of Coco Dataset?(如何下載 Coco Dataset 的特定部分?)
Detect image orientation angle based on text direction(根據文本方向檢測圖像方向角度)
Detect centre and angle of rectangles in an image using Opencv(使用 Opencv 檢測圖像中矩形的中心和角度)
主站蜘蛛池模板: 在线一区二区三区 | 日韩一二三区 | 国产欧美一区二区三区国产幕精品 | 日韩中文字幕一区二区 | 精品欧美久久 | 中文在线一区二区 | 九色porny自拍视频 | 一区二区在线不卡 | 精品久久久久久国产 | 欧美一区二区三区久久精品 | 亚洲成人网在线播放 | 皇色视频在线 | 妞干网福利视频 | 日韩免费高清视频 | 成人三级在线播放 | 丝袜美腿一区二区三区动态图 | 玖玖玖在线观看 | 99国产精品久久久久老师 | 日韩精品一区二区三区 | 国产精品国产成人国产三级 | 欧美在线视频一区二区 | 性视频一区 | 国产区在线观看 | 亚洲影视在线 | 久久涩涩 | 国产精品99久久久久久久vr | 男人阁久久| 亚洲天堂男人的天堂 | 羞羞的视频免费看 | 中文字幕免费视频 | 久久国产婷婷国产香蕉 | 国产一区二区日韩 | 91国内精精品久久久久久婷婷 | 中文字幕亚洲精品 | 成人国内精品久久久久一区 | 超碰97干 | 国产一二区免费视频 | 91精品国产美女在线观看 | 日本午夜精品一区二区三区 | 亚洲国产高清高潮精品美女 | 草草草影院 |