久久久久久久av_日韩在线中文_看一级毛片视频_日本精品二区_成人深夜福利视频_武道仙尊动漫在线观看

PyTorch NotImplementedError 轉發

PyTorch NotImplementedError in forward(PyTorch NotImplementedError 轉發)
本文介紹了PyTorch NotImplementedError 轉發的處理方法,對大家解決問題具有一定的參考價值,需要的朋友們下面隨著小編來一起學習吧!

問題描述

import torch
import torch.nn as nn

device = torch.device('cuda' if torch.cuda.is_available() else 
'cpu')

class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.layer = nn.Sequential(
            nn.Conv2d(1, 16, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(16),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2), # 16x16x650
            nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1), # 32x16x650
            nn.ReLU(),
            nn.Dropout2d(0.5),
            nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1), # 64x16x650
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2), # 64x8x325
            nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
            nn.ReLU()) # 64x8x325

        self.fc = nn.Sequential(
            nn.Linear(64*8*325, 128),
            nn.ReLU(),
            nn.Linear(128, 256),
            nn.ReLU(),
            nn.Linear(256, 1),
        )

        def forward(self, x):
            out = self.layer1(x)
            out = self.layer2(out)
            out = out.reshape(out.size(0), -1)
            out = self.fc(out)
            return out

# HYPERPARAMETER
learning_rate = 0.0001 
num_epochs = 15

import data

def main():
    model = Model().to(device)

    criterion = nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(model.parameters(), 
lr=learning_rate)

    total_step = len(data.train_loader)
    for epoch in range(num_epochs):
        for i, (images, labels) in enumerate(data.train_loader):
            images = images.to(device)
            labels = labels.to(device)

            outputs = model(images)
            loss = criterion(outputs, labels)

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

        if (i + 1) % 100 == 0:
            print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
                  .format(epoch + 1, num_epochs, i + 1, total_step, loss.item()))

    model.eval()
    with torch.no_grad():
        correct = 0
        total = 0
        for images, labels in data.test_loader:
            images = images.to(device)
            labels = labels.to(device)
            outputs = model(images)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()

        print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total))

if __name__ == '__main__':
    main()

錯誤:

File "/home/rladhkstn8/Desktop/SWID/tmp/pycharm_project_853/model.py", line 82, in <module>
    main()
  File "/home/rladhkstn8/Desktop/SWID/tmp/pycharm_project_853/model.py", line 56, in main
    outputs = model(images)
  File "/home/rladhkstn8/anaconda3/lib/python3.6/site-packages/torch/nn/modules/module.py", line 477, in __call__
    result = self.forward(*input, **kwargs)
  File "/home/rladhkstn8/anaconda3/lib/python3.6/site-packages/torch/nn/modules/module.py", line 83, in forward
    raise NotImplementedError
NotImplementedError

我不知道問題出在哪里.我知道應該實現NotImplementedError,但是當有未實現的代碼時就會發生.

I do not know where the problem is. I know that NotImplementedError should be implemented, but it happens when there is unimplemented code.

推薦答案

請仔細查看__init__ 函數的縮進:您的 forward__init__ 的一部分,而不是模塊的一部分.

please look carefully at the indentation of your __init__ function: your forward is part of __init__ not part of your module.

這篇關于PyTorch NotImplementedError 轉發的文章就介紹到這了,希望我們推薦的答案對大家有所幫助,也希望大家多多支持html5模板網!

【網站聲明】本站部分內容來源于互聯網,旨在幫助大家更快的解決問題,如果有圖片或者內容侵犯了您的權益,請聯系我們刪除處理,感謝您的支持!

相關文檔推薦

How to draw a rectangle around a region of interest in python(如何在python中的感興趣區域周圍繪制一個矩形)
How can I detect and track people using OpenCV?(如何使用 OpenCV 檢測和跟蹤人員?)
How to apply threshold within multiple rectangular bounding boxes in an image?(如何在圖像的多個矩形邊界框中應用閾值?)
How can I download a specific part of Coco Dataset?(如何下載 Coco Dataset 的特定部分?)
Detect image orientation angle based on text direction(根據文本方向檢測圖像方向角度)
Detect centre and angle of rectangles in an image using Opencv(使用 Opencv 檢測圖像中矩形的中心和角度)
主站蜘蛛池模板: 国产精品久久久久久久久久久久午夜片 | 欧美国产亚洲一区二区 | 久久国产精品精品国产色婷婷 | 国产一区二区黑人欧美xxxx | 成人h视频 | 青青久久久 | 一级特黄视频 | 欧美在线观看免费观看视频 | 欧美综合视频 | 国产美女视频黄a视频免费 国产精品福利视频 | 女朋友的闺蜜3韩国三级 | 午夜视频一区二区三区 | 亚洲国产成人久久综合一区,久久久国产99 | 国产美女特级嫩嫩嫩bbb片 | 色影视| av在线一区二区三区 | 色精品 | 黄色毛片在线观看 | 久久国产精品首页 | 国产欧美一区二区三区日本久久久 | 一区二区三区在线免费观看 | 国产精品久久一区二区三区 | 欧美日韩精品一区二区三区四区 | 成人在线视频网 | 成人在线中文字幕 | 激情av | 精品国产视频 | 国产精品久久久久久久久久久久久久 | 国产精品亚洲一区 | 看av网| 国产免费福利小视频 | 久久精品日产第一区二区三区 | 亚洲精品久久 | 懂色av色香蕉一区二区蜜桃 | 国产精品久久亚洲 | 国产精品免费一区二区三区四区 | 精品免费国产一区二区三区四区介绍 | 天天插天天搞 | 欧美日韩中文字幕 | 亚洲精品视频免费观看 | 成人欧美|