久久久久久久av_日韩在线中文_看一级毛片视频_日本精品二区_成人深夜福利视频_武道仙尊动漫在线观看

高斯拉普拉斯算子是用于斑點檢測還是邊緣檢測

Is Laplacian of Gaussian for blob detection or for edge detection?(高斯拉普拉斯算子是用于斑點檢測還是邊緣檢測?)
本文介紹了高斯拉普拉斯算子是用于斑點檢測還是邊緣檢測?的處理方法,對大家解決問題具有一定的參考價值,需要的朋友們下面隨著小編來一起學習吧!

問題描述

以下代碼來自(被要求刪除鏈接).但我想知道它究竟是如何工作的.如果這被認為是邊緣檢測或斑點檢測,我感到很困惑,因為

如果您有一個半徑為 3 且值 1 以內核為中心的斑點,并且背景的值為 0,您將獲得非常強烈(負面)的響應.很清楚為什么如果半徑設置得當它可以進行斑點檢測.

邊緣檢測呢?好吧,它不像 Sobel 算子,它為您提供梯度和對邊緣的強烈響應.Sobel 算子不會為您提供準確的邊緣,因為梯度通常會在幾個像素上上升和下降.您的邊緣將是幾個像素寬.為了使其定位更準確,我們可以在局部找到具有最大(或最小)梯度的像素.這意味著它的二階導數(拉普拉斯算子)應該為零,或者在該點處有一個過零.

您可以看到處理后的圖像既有明帶又有暗帶.過零是邊緣.要在內核中看到這一點,請嘗試手動在內核上滑動一個完美的步進邊緣以查看響應如何變化.

對于你的第二個問題,我想絕對是試圖找到淺色和深色斑點(淺色斑點,深色背景;深色斑點,淺色背景),因為它們分別給出強烈的負面和強烈的正面回應.然后它在每個像素位置找到所有圖像的最大值.對于每個輸出像素,它使用圖像上具有最大響應的像素作為輸出.我認為他的理由是具有強烈沖動(小斑點)的像素是焦點.

他正在使用 bitwise_not 作為復制機制.它將掩碼指定的一些像素設置為源圖像的按位非.最后,您將獲得由來自不同來源的像素組成的 output,但所有這些像素均未按位進行.要恢復真實圖像,只需再次不"它們,如 NOT(NOT(x)) = x.255-x 正是這樣做的.我認為 copyTo 也可以,不確定為什么他選擇了其他方式.

圖片取自 http://fourier.eng.hmc.edu/e161/lectures/gradient/node8.html.

The following code is provided from (was asked to remove the link). But I was wondering how it exactly works. I was confused if this was considered edge detection or blob detection, as Wikipedia list the Laplacian of Gaussian (LoG) as blob detection.

Also, could somebody explain and provide a deeper explanation for why the absolute value is calculated and what is going on in the focus_stack() function?

#   Compute the gradient map of the image
def doLap(image):

    # YOU SHOULD TUNE THESE VALUES TO SUIT YOUR NEEDS
    kernel_size = 5         # Size of the laplacian window
    blur_size = 5           # How big of a kernal to use for the gaussian blur
                            # Generally, keeping these two values the same or very close works well
                            # Also, odd numbers, please...

    blurred = cv2.GaussianBlur(image, (blur_size,blur_size), 0)
    return cv2.Laplacian(blurred, cv2.CV_64F, ksize=kernel_size)

#
#   This routine finds the points of best focus in all images and produces a merged result...
#
def focus_stack(unimages):
    images = align_images(unimages)

    print "Computing the laplacian of the blurred images"
    laps = []
    for i in range(len(images)):
        print "Lap {}".format(i)
        laps.append(doLap(cv2.cvtColor(images[i],cv2.COLOR_BGR2GRAY)))

    laps = np.asarray(laps)
    print "Shape of array of laplacians = {}".format(laps.shape)

    output = np.zeros(shape=images[0].shape, dtype=images[0].dtype)

    abs_laps = np.absolute(laps)
    maxima = abs_laps.max(axis=0)
    bool_mask = abs_laps == maxima
    mask = bool_mask.astype(np.uint8)
    for i in range(0,len(images)):
        output = cv2.bitwise_not(images[i],output, mask=mask[i])

    return 255-output

解決方案

EDIT: Cris Luengo is right. Ignore the part about edge detector.


Laplacian of Gaussian(LoG) can be used as both edge detector and blob detector. I will skip the detailed mathematics and rationale, I think you can read them on a book or some websites here, here and here.

To see why it can be used as both, let's look at its plot and kernel.

If you have a blob with radius of 3 and value 1 centered at the kernel, and the background has value 0, you will have a very strong (negative) response. It is clear why it can do blob detection if the radius is set properly.

How about edge detection? Well it is not like Sobel operator which gives you gradient and strong response for edges. Sobel operator does not give you accurate edges as the gradient usually rise and fall across a few pixels. Your edge would then be several pixels wide. To make it localize more accurate, we can find the pixel with maximum (or minimum) gradient locally. This implies its second derivative (Laplacian) should equal zero, or has a zero-crossing at that point.

You can see the processed image has both a light and dark band. The zero-crossing is the edge. To see this with a kernel, try sliding a perfect step edge across the kernel manually to see how the respond changes.

For you second question, I guess the absolute is trying to find both light and dark blob (light blob, dark background; dark blob, light background) as they gives strong negative and strong positive response respectively. It then find the max across all images at each pixel location. For each output pixel, it uses the pixel at the image with the maximum response as output. I think his rationale is that pixels with strong impulse (small blob) are in-focus.

He is using bitwise_not as a copy mechanism. It sets some pixels, specified by the mask, to the bitwise not of the source image. At the end, you would have output consisting of pixels from different sources, except that all of them have undergone bitwise not. To recover the true image, simply 'NOT' them again, as NOT(NOT(x)) = x. 255-x does exactly that. I think a copyTo would work too, not sure why he chose otherwise.

Images taken from http://fourier.eng.hmc.edu/e161/lectures/gradient/node8.html.

這篇關于高斯拉普拉斯算子是用于斑點檢測還是邊緣檢測?的文章就介紹到這了,希望我們推薦的答案對大家有所幫助,也希望大家多多支持html5模板網!

【網站聲明】本站部分內容來源于互聯網,旨在幫助大家更快的解決問題,如果有圖片或者內容侵犯了您的權益,請聯系我們刪除處理,感謝您的支持!

相關文檔推薦

How to draw a rectangle around a region of interest in python(如何在python中的感興趣區域周圍繪制一個矩形)
How can I detect and track people using OpenCV?(如何使用 OpenCV 檢測和跟蹤人員?)
How to apply threshold within multiple rectangular bounding boxes in an image?(如何在圖像的多個矩形邊界框中應用閾值?)
How can I download a specific part of Coco Dataset?(如何下載 Coco Dataset 的特定部分?)
Detect image orientation angle based on text direction(根據文本方向檢測圖像方向角度)
Detect centre and angle of rectangles in an image using Opencv(使用 Opencv 檢測圖像中矩形的中心和角度)
主站蜘蛛池模板: 国产成人高清视频 | 日韩在线视频免费观看 | 国产精品久久久久久网站 | 日韩一区二区在线观看 | 国产一区在线免费 | 黄色网址免费看 | 日韩精品一二三 | 色婷婷婷婷色 | 久久久久久久91 | 亚洲国产成人精品久久久国产成人一区 | 国产一区二区精品在线 | 欧美成人专区 | 麻豆久久久9性大片 | 国产精品久久久久久久久久妇女 | 成人免费观看男女羞羞视频 | 久热伊人| 久久成人精品视频 | 精品91久久 | 国产成人精品一区二区三区视频 | 天天草天天 | 国产免费观看一区 | 欧美一区二区三区的 | 91精品国产综合久久婷婷香蕉 | 国产高清一区二区三区 | 麻豆国产一区二区三区四区 | 久久久久久久久久久久久久国产 | 精品免费| 狠狠综合网 | 日韩国产一区二区三区 | 日韩精品久久久久 | 色频 | 久草资源| 国产h视频 | 91影院在线观看 | 精品亚洲一区二区三区四区五区 | 色婷婷久久久亚洲一区二区三区 | 在线国产视频 | 成人免费视频网站在线观看 | 欧美日韩国产免费 | 欧美一区二区免费 | 一级片网站视频 |