久久久久久久av_日韩在线中文_看一级毛片视频_日本精品二区_成人深夜福利视频_武道仙尊动漫在线观看

      <bdo id='0UQvW'></bdo><ul id='0UQvW'></ul>
      <tfoot id='0UQvW'></tfoot>

    1. <i id='0UQvW'><tr id='0UQvW'><dt id='0UQvW'><q id='0UQvW'><span id='0UQvW'><b id='0UQvW'><form id='0UQvW'><ins id='0UQvW'></ins><ul id='0UQvW'></ul><sub id='0UQvW'></sub></form><legend id='0UQvW'></legend><bdo id='0UQvW'><pre id='0UQvW'><center id='0UQvW'></center></pre></bdo></b><th id='0UQvW'></th></span></q></dt></tr></i><div class="qwawimqqmiuu" id='0UQvW'><tfoot id='0UQvW'></tfoot><dl id='0UQvW'><fieldset id='0UQvW'></fieldset></dl></div>

        <small id='0UQvW'></small><noframes id='0UQvW'>

        <legend id='0UQvW'><style id='0UQvW'><dir id='0UQvW'><q id='0UQvW'></q></dir></style></legend>

        續 - 車牌檢測

        Continued - Vehicle License Plate Detection(續 - 車牌檢測)
          • <bdo id='LZou1'></bdo><ul id='LZou1'></ul>
            <tfoot id='LZou1'></tfoot>

                <legend id='LZou1'><style id='LZou1'><dir id='LZou1'><q id='LZou1'></q></dir></style></legend>

                <small id='LZou1'></small><noframes id='LZou1'>

                  <tbody id='LZou1'></tbody>

                • <i id='LZou1'><tr id='LZou1'><dt id='LZou1'><q id='LZou1'><span id='LZou1'><b id='LZou1'><form id='LZou1'><ins id='LZou1'></ins><ul id='LZou1'></ul><sub id='LZou1'></sub></form><legend id='LZou1'></legend><bdo id='LZou1'><pre id='LZou1'><center id='LZou1'></center></pre></bdo></b><th id='LZou1'></th></span></q></dt></tr></i><div class="qwawimqqmiuu" id='LZou1'><tfoot id='LZou1'></tfoot><dl id='LZou1'><fieldset id='LZou1'></fieldset></dl></div>
                • 本文介紹了續 - 車牌檢測的處理方法,對大家解決問題具有一定的參考價值,需要的朋友們下面隨著小編來一起學習吧!

                  問題描述

                  限時送ChatGPT賬號..

                  從這個線程繼續:

                  車牌檢測有哪些好的算法?

                  我開發了我的圖像處理技術來盡可能地強調車牌,總的來說我很滿意,這里有兩個示例.

                  I've developed my image manipulation techniques to emphasise the license plate as much as possible, and overall I'm happy with it, here are two samples.

                  現在是最困難的部分,實際檢測車牌.我知道有一些邊緣檢測方法,但我的數學很差,所以我無法將一些復雜的公式翻譯成代碼.

                  Now comes the most difficult part, actually detecting the license plate. I know there are a few edge detection methods, but my maths is quite poor so I'm unable to translate some of the complex formulas into code.

                  到目前為止,我的想法是遍歷圖像中的每個像素(基于 img 寬度和高度的 for 循環)由此將每個像素與顏色列表進行比較,由此檢查算法以查看顏色是否保持不變區分車牌白色和文本的黑色.如果發生這種情況,這些像素會被構建到內存中的新位圖中,那么一旦停止檢測到這種模式,就會執行 OCR 掃描.

                  My idea so far is to loop through every pixel within the image (for loop based on img width & height) From this compare each pixel against a list of colours, from this an algorithm is checked to see if the colors keep differentiating between the license plate white, and the black of the text. If this happens to be true these pixels are built into a new bitmap within memory, then an OCR scan is performed once this pattern has stopped being detected.

                  我很感激對此的一些意見,因為這可能是一個有缺陷的想法,太慢或太密集.

                  I'd appreciate some input on this as it might be a flawed idea, too slow or intensive.

                  謝謝

                  推薦答案

                  你的看顏色是否不斷區分車牌白色和文本的黑色"的方法基本上是尋找像素強度變化的區域從黑色到白色,反之亦然很多次.邊緣檢測可以完成基本相同的事情.但是,實現自己的方法仍然是一個好主意,因為您將在此過程中學到很多東西.哎呀,為什么不兩者都做,并將您的方法的輸出與一些現成的邊緣檢測算法的輸出進行比較?

                  Your method of "see if the colors keep differentiating between the license plate white, and the black of the text" is basically searching for areas where the pixel intensity changes from black to white and vice-versa many times. Edge detection can accomplish essentially the same thing. However, implementing your own methods is still a good idea because you will learn a lot in the process. Heck, why not do both and compare the output of your method with that of some ready-made edge detection algorithm?

                  在某些時候,您會想要一個二值圖像,例如黑色像素對應于非字符"標簽,白色像素對應于是字符"標簽.也許最簡單的方法是使用閾值函數.但這只有在角色已經以某種方式強調的情況下才會有效.

                  At some point you will want to have a binary image, say with black pixels corresponding to the "not-a-character" label, and white pixels corresponding to the "is-a-character" label. Perhaps the simplest way to do that is to use a thresholding function. But that will only work well if the characters have already been emphasized in some way.

                  正如您在另一個帖子中提到的那樣,您可以使用黑帽運算符來執行此操作,結果如下:

                  As someone mentioned in your other thread, you can do that using the black hat operator, which results in something like this:

                  如果您使用 Otsu 的方法(自動確定全局閾值級別)對上面的圖像進行閾值處理,您會得到:

                  If you threshold the image above with, say, Otsu's method (which automatically determines a global threshold level), you get this:

                  有幾種方法可以清理該圖像.例如,您可以找到連接的組件并丟棄那些太小、太大、太寬或太高而不能成為角色的組件:

                  There are several ways to clean that image. For instance, you can find the connected components and throw away those that are too small, too big, too wide or too tall to be a character:

                  由于圖像中的字符相對較大且完全連接,因此此方法效果很好.

                  Since the characters in your image are relatively large and fully connected this method works well.

                  接下來,您可以根據鄰居的屬性過濾剩余的組件,直到您擁有所需數量的組件(= 字符數).如果您想識別字符,您可以計算每個字符的特征并將它們輸入到分類器中,該分類器通常使用監督學習構建.

                  Next, you could filter the remaining components based on the properties of the neighbors until you have the desired number of components (= number of characters). If you want to recognize the character, you could then calculate features for each character and input them to a classifier, which usually is built with supervised learning.

                  當然,上述所有步驟只是一種方法.

                  All the steps above are just one way to do it, of course.

                  順便說一句,我使用 OpenCV + Python 生成了上面的圖像,這是計算機視覺的絕佳組合.

                  By the way, I generated the images above using OpenCV + Python, which is a great combination for computer vision.

                  這篇關于續 - 車牌檢測的文章就介紹到這了,希望我們推薦的答案對大家有所幫助,也希望大家多多支持html5模板網!

                  【網站聲明】本站部分內容來源于互聯網,旨在幫助大家更快的解決問題,如果有圖片或者內容侵犯了您的權益,請聯系我們刪除處理,感謝您的支持!

                  相關文檔推薦

                  What are good algorithms for vehicle license plate detection?(車牌檢測有哪些好的算法?)
                  onClick event for Image in Unity(Unity中圖像的onClick事件)
                  Running Total C#(運行總 C#)
                  Deleting a directory when clicked on a hyperlink with JAvascript.ASP.NET C#(單擊帶有 JAvascript.ASP.NET C# 的超鏈接時刪除目錄)
                  asp.net listview highlight row on click(asp.net listview 在單擊時突出顯示行)
                  Calling A Button OnClick from a function(從函數調用按鈕 OnClick)
                        <tbody id='zLZsq'></tbody>
                      <tfoot id='zLZsq'></tfoot>
                      • <bdo id='zLZsq'></bdo><ul id='zLZsq'></ul>

                      • <i id='zLZsq'><tr id='zLZsq'><dt id='zLZsq'><q id='zLZsq'><span id='zLZsq'><b id='zLZsq'><form id='zLZsq'><ins id='zLZsq'></ins><ul id='zLZsq'></ul><sub id='zLZsq'></sub></form><legend id='zLZsq'></legend><bdo id='zLZsq'><pre id='zLZsq'><center id='zLZsq'></center></pre></bdo></b><th id='zLZsq'></th></span></q></dt></tr></i><div class="qwawimqqmiuu" id='zLZsq'><tfoot id='zLZsq'></tfoot><dl id='zLZsq'><fieldset id='zLZsq'></fieldset></dl></div>

                        <small id='zLZsq'></small><noframes id='zLZsq'>

                          <legend id='zLZsq'><style id='zLZsq'><dir id='zLZsq'><q id='zLZsq'></q></dir></style></legend>

                          1. 主站蜘蛛池模板: 日本三级做a全过程在线观看 | 亚洲综合一区二区三区 | 精品国产1区2区3区 在线国产视频 | 亚洲电影一区二区三区 | 亚洲九九精品 | 婷婷久 | 91成人免费| 亚洲啊v在线 | 嫩呦国产一区二区三区av | 福利精品 | 婷婷久久综合 | 天天天天天天天干 | 日本在线视频一区二区 | 国产一区二区三区四区三区四 | 国产一区视频在线 | 午夜视频一区 | 国产成人免费视频 | 久久大陆 | 91免费看片 | 99精品国自产在线 | 狠狠的干狠狠的操 | 国产精品一区三区 | 国产成人精品一区二区三 | 91久久精品一区二区三区 | 亚洲一区欧美 | 欧美国产激情 | 国产一级一片免费播放 | 亚洲性网| 91豆花视频| 99re视频精品 | 激情国产 | 亚洲欧美中文日韩在线v日本 | 特a毛片 | 久久乐国产精品 | 亚洲九色| 国产二区在线播放 | 中文字幕在线播放第一页 | 欧美13videosex性极品 | 在线观看日本高清二区 | 日韩av手机在线观看 | 欧美h版|